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Consider a nonautonomous nonlinear system of differential equations of the form

ẋ = (A + B(t, λ) + X(t, ϕ, x, ε, λ))x, (1′)
ϕ̇ = μ(t, ε) + Φ(t, ϕ, x, ε, λ), (1′′)

where x, ϕ are n-, p-dimensional vectors respectively, ε, λ are l-, q-dimensional vector-parameters, A,
B(t, λ), X(t, ϕ, x, ε, λ) are (n×n)-matrices, μ(t, ε), Φ(t, ϕ, x, ε, λ) are p-dimensional vector-functions.

We introduce the following notations: |z|= max
i

{|zi|}, ‖D(t)‖= max
|z|≤1

|D(t)z|, ‖D‖= sup
[0,T ]

‖D(t)‖, z is

a vector, D(t) is a matrix, M(δ0)=[0, T ]×M0(δ0)×En×E(δ0)×Λ(δ0), M0(δ0) = {ϕ ∈ Ep : |ϕ| ≤ δ0},
E(δ0) = {ε ∈ El : |ε| ≤ δ0}, Λ(δ0) = {λ ∈ Eq : |λ| ≤ δ0}, Es is an s-dimensional vector space, T >0,
δ0 > 0 are some numbers.

We will assume from now on that vector-functions μ(t, ε), Φ(t, ϕ, x, ε, λ) and matrices B(t, λ),
X(t, ϕ, x, ε, λ) are defined and continuous on the set M(δ0), and the following conditions hold true on
M(δ0):

‖Φ(t, ϕ′, x, ε′, λ′) − Φ(t, ϕ′′, x, ε′′, λ′′)‖ ≤ c1(δ)|ϕ′ − ϕ′′| + c2(δ)|ε′ − ε′′| + c3(δ)|λ′ − λ′′|,
‖X(t, ϕ′, x, ε′, λ′) − X(t, ϕ′′, x, ε′′, λ′′)‖ ≤ l1(δ)|ϕ′ − ϕ′′| + l2(δ)|ε′ − ε′′| + l3(δ)|λ′ − λ′′|,

‖B(t, λ′) − B(t, λ′′)‖ ≤ a|λ′ − λ′′|, 0 < δ ≤ δ0, |μ(t, ε′) − μ(t, ε′′)| ≤ b|ε′ − ε′′|, a, b are some positive
numbers, for each i = 1, 3 and δ → 0, ci(δ) → 0, li(δ) → 0 uniformly with respect to t, x on the set
[0, T ] × R, R is an arbitrary fixed closed and bounded subset of the space En; X(t, ϕ, 0, ε, λ)=0,
Φ(t, ϕ, 0, ε, λ)=0, B(t, 0)=0, μ(t, 0)=0, lim

λ→0
B(t, λ)=0, lim

x→0
X(t, ϕ, x, ε, λ)=0, lim

x→0
Φ(t, ϕ, x, ε, λ)=0;

T∫

0

μ(t, ε)dt = Gε + Θ(ε), G is a matrix, |Θ(ε′) − Θ(ε′′)| ≤ (τ(δ))|ε′ − ε′′|, τ(δ) → 0 for δ → 0; vector-

functions μ(t, ε), Φ(t, ϕ, x, ε, λ) and matrices B(t, λ), X(t, ϕ, x, ε, λ) are T -periodic in t in the definition
domain.

Problem. For system (1), derive conditions of the existence of nonzero T -periodic solution.

The problem of existence of periodic solution to system (1) was considered in [1–3], where one of the
basic requirements was the assumption that all eigenvalues of matrix A have nonzero real parts. In this
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paper, we suggest the way to construct the transformation of a periodic function to a periodic one, at
that the matrix A may have zero or pure imaginary eigenvalues.

The problem of finding conditions for the system of differential equations to have nonzero periodic
solutions, was considered in several papers, among them [4–6]. Investigation of existence conditions for
nonzero periodic solutions were restricted there to the search of existence conditions for small solutions
to branching equations. The basic equation of branching in the above mentioned papers was the
Lyapunov–Schmidt equation constructed by means of representation of the space in the form of direct
sum of two subspaces, one of which is finite-dimensional with the dimension equal the number of zeros
of linear operator. In order to define the existence conditions for small solution of branching equation,
they used mainly the theory of indices of zero point of a vector field and representation of the solution in
the form of series.

In this paper, the existence of nonzero periodic solutions is established by the method of fixed point of
nonlinear operator. It is worthy to note that the system of the form

ẏ = S(v)y + f(t, y, v),

where y, f are n-dimensional vectors, S(v) is a matrix, v is a vector-parameter, can be reduced to system
(1) by introduction of polar coordinates.

We denote by C(d, k) the set of T -periodic vector-functions F (t) satisfying conditions |F (t)| ≤ d,
|F (t′) − F (t′′)| ≤ k|t′ − t′′| for all [t′, t′′] ∈ [0, T ], d, k are some positive numbers.

Definition. Let F (t) ∈ C(d, k). By a solution of system (1′′) for x = F (t), ε ∈ E(δ0), λ ∈ Λ(δ0) we call
a vector-function ϕ(t) defined and continuously differentiable on the segment [a, b], satisfying system
(1′′) for any t ∈ [a, b].

We denote the solution ϕ(t) to the system

ϕ̇ = μ(t, ε) + Φ(t, ϕ, F (t), ε, λ)

satisfying initial conditions ϕ(0) = ϕ0 by ϕ(t, ϕ0, F, ε, λ), ϕ0 ∈ Ep.
Let ϕ∗ ∈ Ep be an arbitrary fixed vector. Our assumptions imply that for x = 0 and ε = 0, the

solution of system of Eqs. (1′′) is the vector-function ϕ(t) ≡ ϕ∗. Then due to the theorem about
uniqueness of solution and its continuous dependence on initial values and parameter, there exist
numbers d∗ and δ∗ ∈ (0, δ0] such that for all ϕ0, |ϕ0 − ϕ∗| ≤ δ∗, F (t) ∈ C(d∗, k), ε ∈ E(δ∗), λ ∈
Λ(δ∗), system (1′′) has a solution ϕ(t, ϕ∗ + ϕ0, F, ε, λ), ϕ(0, ϕ∗ + ϕ0, F, ε, λ) = ϕ∗ + ϕ0 defined on
the segment [0, T ], continuous on the set [0, T ] × {x : |x| ≤ d∗} × E(δ∗) × Λ(δ∗) and satisfying the
inequality |ϕ(t, ϕ∗ + ϕ0, F, ε, λ) − ϕ∗| ≤ δ0 for all t ∈ [0, T ].

For simplicity, we let ϕ∗ = 0, ϕt = ϕ(t, ϕ0, F, ε, λ).
Let us find the conditions of existence of T -periodic solution for system (1′′).

Lemma. Solution ϕt = ϕ(t, ϕ0, F, ε, λ) to system (1′′) satisfies Lipschitz condition in the vari-
ables ε, λ.

Proof. Let ϕ′
t = ϕ(t, ϕ0, F, ε′, λ′), ϕ′′

t = ϕ(t, ϕ0, F, ε′′, λ′′). Since

ϕt = ϕ0 +
∫ t

0
(μ(ξ, ε) + Φ(ξ, ϕξ, F (ξ), ε, λ))dξ,

we get that for all ε′, ε′′ ∈ E(δ), λ′, λ′′ ∈ Λ(δ), F (t) ∈ C(d, k), d ∈ (0, d∗], t ∈ [0, T ],

|ϕ′
t − ϕ′′

t | ≤
∫ t

0
(c1(δ)|ϕ′

ξ − ϕ′′
ξ | + c2(δ)|ε′ − ε′′| + c3(δ)|λ′ − λ′′| + b|ε′ − ε′′|)dξ

≤ T [(c2(δ) + b|ε′ − ε′′| + c3(δ)|λ′ − λ′′|)] +
∫ t

0
c1(δ)|ϕ′

ξ − ϕ′′
ξ |dξ.

Due to Grönwall–Bellman inequality ([3], P. 108), we obtain

|ϕ′
t − ϕ′′

t | ≤ T [(c2(δ) + b|ε′ − ε′′| + c3(δ)|λ′ − λ′′|)] exp c1(δ)T.
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With γ1(δ) = T (c2(δ) + b) exp c1(δ)T , γ2(δ) = Tc3(δ) exp c1(δ)T , we obtain the inequality

|ϕ′
t − ϕ′′

t | ≤ γ1(δ)|ε′ − ε′′| + γ2(δ)|λ′ − λ′′|. (2) �

It follows straightforwardly from the definition of periodic solution that ϕt = ϕ(t, ϕ0, F, ε, λ) is T -
periodic solution of system (1′′) if and only if the equality

Gε + Θ(ε) +
∫ T

0
Φ(t, ϕt, F (t), ε, λ)dt = 0 (3)

holds true.

Theorem 1. Let rankG = p. Then there exist numbers δ1 ∈ (0, δ∗], d ∈ (0, d∗] such that for
any vector-function F (t) ∈ C(d, k) and for any fixed vector λ ∈ Λ(δ∗), there exists a value of
parameter ε ∈ E(δ1) for which the solution ϕt = ϕ(t, ϕ0, F, ε, λ) to system (1′′) is T -periodic.

Proof. As it was mentioned above, for all F (t) ∈ C(d, k), ε ∈ E(δ∗), λ ∈ Λ(δ∗), system (1′′) has a
solution ϕt = ϕ(t, ϕ0, F, ε, λ) defined and bounded on the segment [0, T ].

Let us prove that there exist numbers δ1 ∈ (0, δ∗], d ∈ (0, d∗] such that for any vector-function
F (t) ∈ C(d, k) and any vector λ ∈ Λ(δ∗), there exists a vector ε ∈ E(δ1) satisfying equality (3).

For simplicity, assume that nonzero minor of order p is placed on the first p columns of matrix G.
Then system (3) can be rewritten as

ε1 = −G−1
1

(

G2ε2 +
∫ T

0
Φ(t, ϕt, F (t), ε, λ)dt + Θ(ε)

)

. (4)

Define an operator Γ by the right-hand side of equality (4). Let ν ∈ (0, 1) be some number. Taking
into consideration the properties of quantities c1(δ), γ1(δ), c2(δ), τ(δ), we choose a number δ1 ∈ (0, δ∗]
such that for any δ ∈ (0, δ1], inequality ‖G−1

1 ‖T (c1(δ)γ1(δ) + c2(δ) + τ(δ)) < ν holds true. Then for all
ε′1, ε′′1 such that (ε′1, ε2) ∈ E(δ1), (ε′′1 , ε2) ∈ E(δ1), we have

|Γε′1 − Γε′′1 | ≤ ‖G−1
1 ‖(T (c1(δ)|ϕ′

t − ϕ′′
t | + c2(δ)|ε′1 − ε′′1 |) + τ(δ)|ε′1 − ε′′1 |)

≤ ‖G−1
1 ‖(T (c1(δ)γ1(δ) + c2(δ)) + τ(δ1))||ε′1 − ε′′1 || ≤ ν|ε′1 − ε′′1 |,

i.e., the operator Γ on the set E∗(δ1) = {ε1 : |ε1| ≤ δ1} is a contraction. Moreover, we choose numbers
d, δ ∈ (0, δ1] such that for all F (t) ∈ C(d, k), any vector ε2 (|ε2| ≤ δ), and any vector λ ∈ Λ(δ∗), ε1 = 0,
the inequality

|Γ0| ≤ ‖G−1
1 ‖

(

|G2ε2| +
∫ T

0
|Φ(t, ϕt, F (t), ε, λ)|dt + |Θ(ε)|

)

≤ (1 − ν)δ1

holds true. Thus, |Γε1| ≤ |Γε1 − Γ0| + |Γ0| < δ1.

Hence, due to the Banach theorem, for all fixed vectors |ε2| ≤ δ, λ ∈ Λ(δ∗), and vector-function
F (t) ∈ C(d, k), operator Γ on the set {ε1 : |ε1| ≤ δ1} has a unique fixed point. Hence, for fixed
|ε∗2| ≤ δ we get that ε = (ε1, ε

∗
2) ∈ E(δ1) is the unique solution to system (3). This means that for all

F (t) ∈ C(d, k), λ ∈ Λ(δ∗), there exists a unique vector ε = (ε1, ε
∗
2) ∈ E(δ1) such that system (1′′) has

a solution ϕt satisfying equality (4), and this solution is T -periodic.

We assume further that numbers d and δ1 are chosen according to Theorem 1. Proof of Theorem
about existence of nonzero periodic solution of system (1) is based on the following

Theorem 2 ([7]). Let
1) K and Λ be closed compact subsets of linear normed spaces, K be a convex set;
2) on the subset of the set K × Λ, there exists an operator Tλ such that for all x ∈ K, there

exists a unique λ ∈ Λ satisfying inclusion Tλx ∈ K;
3) limits xn → x0, λn → λ0, yn = Tλnxn, yn → y0 imply y0 = Tλ0x0.

Then there exist x∗ ∈ K, λ∗ ∈ Λ such that x∗ = Tλ∗x∗.
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Notice that contraction mapping principle and Bohl–Brouwer theorem about fixed point are gener-
alized in M. A. Krasnoselskii’s fixed point principle. The latter can be used to prove local theorems on
existence of solutions to systems of differential equations in more general statements [8].

Let F (t) ∈ C(d, k), λ ∈ Λ(δ∗). Then due to Theorem 1, there exists a unique vector ε = (ε1, ε
∗
2) ∈

E(δ1) such that ϕt = ϕ(t, ϕ0, F, ε, λ) is a T -periodic solution of system (1′′).

Together with (1′), consider the system

ẏ = [A + B(t, λ) + X(t, ϕt, F (t), ε, λ)]y. (5)

Let Y (t, ϕt, F, ε, λ) be fundamental matrix of system (5), Y (0, ϕt, F, ε, λ) = E, E be identity matrix.
Then a solution y(t, ϕt, F, ε, λ), y(0, ϕt, F, ε, λ) = α to system (5) is defined by the equality

y(t, ϕt, F, ε, λ) = Y (t, ϕt, F, ε, λ)α, (6)

where α is some constant vector. A solution y(t, ϕt, F, ε, λ) is T -periodic if and only if

(Y (T,ϕt, F, ε, λ) − E)α = 0.

Notice that equality (6) for any fixed λ ∈ Λ(δ∗), defines an operator L(λ) : F (t) → y(t, ϕt, F, ε, λ) on
the set C(d, k) which maps any vector-function F (t) ∈ C(d, k) to a vector-function y(t, ϕt, F, ε, λ).

Theorem 3 ([7]). Fixed points of operator L(λ) are T -periodic solutions to system (1′).

A fundamental matrix of solutions to system (5) is representable by the equality

Y (t, ϕt, F, ε, λ) = X(t) + H(t, ϕt, F, ε, λ), (7)

where X(t) is a fundamental matrix of solutions to system ẋ = Ax, X(0) = E, matrix H(t, ϕt, F, ε, λ),
H(0, ϕt, F, ε, λ) = 0, is a solution to matrix differential equation

Ḋ = [A + B(t, λ) + X(t, ϕt, F (t), ε, λ)]D + [B(t, λ) + X(t, ϕt, F (t), ε, λ)]X(t)

and, hence, it is defined by the equality

H(t, ϕt, F, ε, λ) = Y (t, ϕt, F, ε, λ) ·
∫ t

0
Y −1(τ, ϕτ , F (τ), ε, λ)[B(τ, λ)

+ X(τ, ϕτ , F (τ), ε, λ)]X(τ)dτ, (8)

H(t, ϕt, F, ε, λ) = O(|λ|) + O(d), because matrices Y (t, ϕt, Fε, λ), Y −1(t, ϕt, F, ε, λ) are continuous
in their definition domain. Let us check that a solution to system (5) satisfies the Lipschitz condition in
the variables ε, λ. Since for all t ∈ [0, T ],

ẏ(t, ϕt, F (t), ε, λ) = (A + B(t, λ) + X(t, ϕt, F (t), ε, λ))y(t, ϕt, F (t), ε, λ),

we get

y(t, ϕt, F (t), ε, λ) = α +
∫ t

0
(A + B(ξ, λ) + X(ξ, ϕξ , F (ξ), ε, λ))y(ξ, ϕξ , F, ε, λ)dξ.

Hence,

|y(t, ϕt, F, ε, λ)| ≤ |α| +
∫ t

0
(‖A‖ + ‖B(ξ, λ)‖ + ‖X(ξ, ϕξ , F (ξ), ε, λ)‖)|y(ξ, ϕξ , F, ε, λ)|dξ.

The lemma by Grönwall–Bellman implies

|y(t, ϕt, F, ε, λ)| ≤ |α| exp(‖A‖ + R∗ + L)T,

where ‖B(t, λ)‖ ≤ R∗, ‖X(t, ϕt, F (t), ε, λ)‖ ≤ L on the set M0(δ∗) for any vector-function F (t) ∈
C(d0, k), R∗, L are some numbers. Then on the set [0, T ] × E(δ∗) × Λ(δ∗),
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|y(t, ϕ′
t, F, ε′, λ′) − y(t, ϕ′′

t , F, ε′′, λ′′)| ≤
∫ t

0
|(A + B(ξ, λ′) + X(ξ, ϕ′

t, F (t), ε′, λ′))(y(ξ, ϕ′
t, F,

ε′, λ′) − y(ξ, ϕ′′
t , F, ε′′, λ′′)) + [(B(ξ, λ′) + X(ξ, ϕ′

t, F (t), ε′, λ′) − (B(ξ, λ′′) + X(ξ, ϕ′′
t , F (t),

ε′′, λ′′)))]y(ξ, ϕ′′
t , F, ε′′, λ′′)|dξ ≤ (‖A‖ + R∗ + L)

∫ t

0
|y(ξ, ϕ′

t, F, ε′, λ′) − y(ξ, ϕ′′
t , F, ε′′, λ′′)|dξ

+ |α| exp(‖A‖ + R∗ + L)T (a|λ′ − λ′′| + l1(δ)|ϕ′
t − ϕ′′

t | + l2(δ)|ε′ − ε′′| + l3(δ)|λ′ − λ′′|).

Due to Grönwall–Bellman Lemma and inequality (2), we get |y(t, ϕ′
t, F, ε′, λ′)− y(t, ϕ′′

t , F, ε′′, λ′′)| ≤
T (N1(δ)|ε′ − ε′′| + N2(δ)|λ′ − λ′′|) exp(‖A‖ + R∗ + L)T .

This means that on the set E(δ) × Λ(δ), δ ∈ (0, δ∗], a solution to system (5), and, hence, elements of
matrix Y (t, ϕt, F, ε, λ) and matrix H(t, ϕt, F, ε, λ) (due to equality (7)) satisfy the Lipschitz condition in
the variables ε, λ.

Let us verify the representation

H(t, ϕt, F, ε, λ) = X(t)
∫ t

0
X−1(ξ)B(ξ, λ)X̃(ξ)dξ + o(|λ|) + O(d). (9)

Straightforwardly, equality X̃(t) = Y (t, ϕt, F, ε, λ) − H(t, ϕt, F, ε, λ) implies Y −1(t, ϕt, F, ε, λ) =
X̃−1(t) − X̃−1(t)H(t, ϕt, F, ε, λ)Y −1(t, ϕt, F, ε, λ). Then due to (8), after appropriate transformations,

H(t, ϕt, F, ε, λ) = X̃(t)
∫ t

0
X−1(ξ)B(ξ, λ)X̃(ξ)dξ + Ψ1(t, ϕt, F, ε, λ) + Ψ2(t, ϕt, F, ε, λ),

for all i ∈ {1, 2}, matrix Ψi(t, ϕt, F, ε, λ) on the set E(δ∗) × Λ(δ∗) satisfies the Lipschitz condition
in the variables ε, λ with constant γij(δ) → 0 for δ → 0, j ∈ {1, 2}. The matrix Ψ1(t, ϕt, F, ε, λ) is
a sum of summands each containing a product of matrices H(t, ϕt, F, ε, λ), B(t, λ) as multiplier;
Ψ2(t, ϕt, F, ε, λ) is a sum of summands each containing a matrix X(t, ϕt, F, ε, λ) as multiplier. Due
to our assertion about matrices B(t, λ), X(t, ϕt, x, ε, λ), we arrive at conclusion that Ψ1(t, ϕt, F, ε, λ) =
o(|λ|)+ O(d), Ψ2(t, ϕt, F, ε, λ) = O(d) uniformly on the sets [0, T ]×{ϕ : |ϕ| ≤ δ0}×{d : 0 ≤ d ≤ d∗}×
E(δ∗), [0, T ] × {ϕ : |ϕ| ≤ δ0} × E(δ∗) × Λ(δ∗), i.e., equality (9) holds true.

Thus, solution y(t, ϕt, F, ε, λ) to system (5) can be presented in the form

y(t, ϕt, F, ε, λ) =
(

X(t) + X(t)
∫ t

0
X

−1(ξ)B(ξ, λ)X(ξ)dξ + o(|λ|) + O(d)
)

α.

The system of equations for the existence conditions of T -periodic solution to system (5) obtains the
form

X(T ) − E + B∗(λ) + o(|λ|) + O(d)α = 0, (10)

where

B∗(λ) = X(t)
∫ T

0
X

−1(T )B(t, λ)X(t)dt.

It is possible to verify that for det(X(T ) − E) �= 0, there exist δ, d such that for any vector-function
F (t) ∈ C(d, k), and any ε ∈ E(δ), λ ∈ Λ(δ), equality (10) does not hold true. Thus, we will assume
further that det(X(T ) − E) = 0.

Let r = rank(X(T ) − E), 0 ≤ r < n. The change of variables α = Sβ, where S = (s1, s2, . . . , sn−r),
s1, s2, . . . , sn−r are linearly independent solutions to the system (X(T ) − E)s = 0, reduces system (10)
to the system

M(ϕt, F, ε, λ)β = 0, (11)

matrix M(ϕt, F, ε, λ) = B(λ) + o(|λ|) + O(d), B(λ) = B∗(λ)S, B(λ) = (bkj(λ))n−r1
1n .
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We write the last column of the matrix M(ϕt, F, ε, λ) in the form mn−r(ϕt, F, ε, λ) = bn−r(λ) +
o(|λ|) + O(d), bn−r(λ) is the last column of the matrix B(λ).

Let us define the conditions of existence of numbers δ, d such that for all λ ∈ Λ(δ), F (t) ∈ C(d, k),
there exists a vector ε ∈ E(δ) satisfying the equality

mn−r(ϕt, F, ε, λ) = 0. (12)

Suppose that

bn−r(λ) = ws(λ) + o(|λ|s), (13)

where ws(λ) is a vector-form of degree s with respect to λ. Due to (13), system (12) obtains the form

ws(λ) + o(|λ|s) + O(d) = 0. (14)

The change of variables λ = ρe, ρ > 0, reduces system (14) to the system

ws(e) + O(ρ|e|) +
1
ρs

O(d) = 0. (15)

Let Q = {e : |e| = 1}. If ws(e) �= 0 for all e ∈ Q, there exist numbers ρ∗ > 0, d > 0 such that for
all ρ ∈ (0, ρ∗), ε ∈ E(δ∗), F (t) ∈ C(d, k), e ∈ Q equality (15) does not hold true. Thus, we assume
further that there exists a vector e∗ ∈ Q satisfying the equality ws(e∗) = 0. Using Taylor’s formula in the
neighborhood of point e∗ for vector-form ws(e), we rewrite system (15) in the form

D(e∗)τ +
s∑

k=2

Pk(e∗, τ ) + O(ρ|e|)+ 1
ρs

O(d) = 0, (16)

where D(e∗) is a value of Jacobi matrix of vector-form ws(e) at point e∗, Pk(e∗, τ ) is a vector-form of
degree k with respect to τ for all k = 2, s; e = e∗ + τ , |τ | ≤ Δ, Δ ∈ (0, 1) is some number.

Theorem 4. Let 1) n ≤ q, rankD(e∗) = n; 2) p ≤ l, rankG = p. Then system (1′), (1′′) has a nonzero
T -periodic solution.

Proof. Due to Theorem 1, there exist numbers d > 0, δ1 > 0, δ ∈ (0, δ1] such that for all F (t) ∈ C(d, k),
λ ∈ Λ(δ) and any fixed vector |ε∗2| ≤ δ, there exists a unique vector ε = (ε1, ε

∗
2) ∈ E(δ1) such that

ϕt = ϕ(t, ϕ0, F, ε, λ) is a T -periodic solution to system (1′′). Hence, on the set Λ(δ∗) Theorem 1
defines a function ε(λ) = (ε1(λ), ε2(λ) = ε∗2) such that ϕt = ϕ(t, ϕ0, F, ε(λ), λ) is a T -periodic solution
to system (1′′). Let us prove that vector-function ε(λ) satisfies the Lipschitz condition on the set Λ(δ∗).

For any fixed vector-function F (t) ∈ C(d, k), and any vectors λ′, λ′′ ∈ Λ(δ∗) due to (4) and (2),
we get |ε(λ′) − ε(λ′′)| = |ε1(λ′) − ε1(λ′′)| ≤ η1(δ)|ε(λ′) − ε(λ′′)|+ η2(δ)|λ′ − λ′′|, ηi(δ) → 0 for δ → 0,
i ∈ {1, 2}. We choose a number δ1 such that for any δ ∈ (0, δ1], the inequality

|ε(λ′) − ε(λ′′)| ≤ η2(δ)
1 − η1(δ)

|λ′ − λ′′| (17)

holds true, i.e., vector-function ε(λ) on the set Λ(δ∗) satisfies the Lipschitz condition.

Substituting solution ϕt = ϕ(t, ϕ0, F, ε(λ), λ) and vector-function F (t) ∈ C(d, k), ε = ε(λ) into
system (1′), we get system (6), whose solution is vector-function y(t, ϕt, F, ε(λ), λ) defined by equality
(6). We reduce the problem to the proof of existence of numbers d and δ1 such that for all vector-function
F (t) ∈ C(d, k), there exists a vector λ ∈ Λ(δ1) satisfying the equality mn−r(ϕt, F, ε(λ), λ) = 0. For
simplicity, we assume that a nonzero minor of order n of the matrix D(e∗) of system (16) is placed at the
first n columns of the matrix D(e∗). Then system (16) obtains the form

τ1 = −D−1
1

(

D2τ2 +
s∑

k=2

Pk(e∗, τ ) + O(ρ|e∗ + τ |) +
1
ρs

O(d)
)

, (18)
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where det D1 �= 0, D = [D1,D2], τ1 is an n-dimensional vector, τ2 is a (q − n)-dimensional vector,
τ = (τ1, τ2).

Define an operator Γ1 by the right-hand side of equality (18). Then due to inequalities (2), (17),
we can choose a number σ1 such that for all (τ ′

1, τ
′′
1 ) ∈ {τ1 : |τ1| ≤ σ1}, inequality |Γ1τ

′
1 − Γ1τ

′′
1 | ≤

ν|τ ′
1 − τ ′′

1 | holds true, ν ∈ (0, 1) is a number. Moreover, we choose numbers ρ∗, d > 0, σ2 ∈ (0, σ1]
such that for any vector-function F (t) ∈ C(d, k), and any vector |τ2| ≤ σ2, τ1 = 0, ρ = ρ∗, inequality
|Γ0| < (1 − ν) · σ1 holds true. Hence, |Γ1τ1| ≤ |Γ1τ1 − Γ10| + |Γ10| < σ1. This means that for any
fixed |τ2| ≤ σ2, operator Γ1 has a unique fixed point on the set {τ1 : |τ1| ≤ σ2}.

Fix |τ∗
2 | ≤ σ2. Then letting δ1 = ρ∗(1 + σ2), we get that for all vector-function F (t) ∈ C(d, k) there

exists a unique vector

λ ∈ P (δ1) = {λ = ρ∗(e∗ + τ) : τ = (τ1, τ
∗
2 ), |τ1| ≤ σ2} ⊂ Λ(δ1)

satisfying system (12). This means that the last column of matrix M(ϕt, F, ε(λ), λ) of system (11)
mn−r(ϕt, F, ε(λ), λ) = 0. Hence solution to system (11) is vector β, whose first n − r − 1 coordinates
equal zero, a coordinate at position n − r is nonzero, solution y(t, ϕt, F, ε(λ), λ) = Y (t, ϕt, F, ε(λ), λ)
Sβ to system (5) is nonzero T -periodic. Let us prove that we can choose a vector β such that solution
y(t, ϕt, F, ε(λ), λ) belongs to the set C(d, k).

Since matrix Y (t, ϕt, F, ε(λ), λ) is bounded, with the choice of vector β we get

|y(t, ϕt, F, ε(λ), λ)| ≤ ‖Y (t, ϕt, F, ε(λ), λ)‖ ‖S‖β ≤ d,

|ẏ(t, ϕt, F, ε(λ), λ)| ≤ (‖A‖ + ‖B(t, λ)‖ + ‖X(t, ϕt, F, ε(λ), λ)‖)|y(t, ϕt, F, ε(λ), λ)| ≤ Rβ ≤ k,

R > 0 is some number. Due to Lagrange’s mean value theorem,

|y(t′, ϕt, F, ε(λ), λ) − y(t′′, ϕt, F, ε(λ), λ)| ≤ max
[0,T ]

|ẏ(t, ϕt, F, ε(λ), λ)| ≤ k|t′ − t′′|.

This implies y(t, ϕt, F, ε(λ), λ) ∈ C(d, k). Since matrix X(t, ϕ, F, ε(λ), λ) is uniformly continuous
on the set C(d, k) × Λ(δ1) with respect to t ∈ [0, T ], |ϕ| ≤ δ∗, and matrix B(t, λ) is continuous on the
set [0, T ] × Λ(δ1), operator Γ(λ) defined by equality (6) is continuous on the set C(d, k) × Λ(δ1).

Thus, we arrive at conclusion that there exist numbers d > 0, δ1 > 0 such that on the set C(d, k) ×
P (δ1) operator Γ(λ) is continuous, and for any vector-function F (t) ∈ C(d, k), there exists a unique
vector λ ∈ P (δ1) satisfying relation Γ(λ)F (t) = y(t, ϕt, F, ε(λ), λ) ∈ C(d, k). Due to Theorem 2, there
exist F ∗(t) ∈ C(d, k) and λ∗ ∈ P (δ1) such that F ∗(t) is a fixed point of operator Γ(λ∗), i.e., F ∗(t) =
Y (t, ϕt, F

∗, ε(λ∗), λ∗)α, α = Sβ. Then due to Theorem 3, F ∗(t) is nonzero T -periodic solution of the
system (1′) when ε∗ = ε(λ∗), λ∗.

As a result, there exist values ε∗, λ∗, ε∗ = ε(λ∗) of parameters ε, λ for which F ∗(t) = Y (t, ϕt, F
∗,

ε(λ∗), λ∗)α, ϕt = ϕ(t, ϕ0, F
∗, ε∗, λ∗) is nonzero T -periodic solution to system (1′), (1′′).

Suppose that Θ(ε) = fm(ε) + o(|ε|m), where fm(ε) is a vector-form of degree m with respect to ε,

lim
ε→0

o(|ε|m)
|ε|m = 0. From the properties of vector-function Θ(ε) it follows that o(|ε|m) satisfies the Lipschitz

condition with a constant tending to zero as δ → 0. Then system (3) can be rewritten in the form

Gε + fm(ε) +
∫ T

0
Φ(t, ϕt, F (t), ε, λ)dt+o(|ε|m) = 0. (19)

Let rankG = ω, 0 ≤ ω < p. With the help of elementary transformations and the change of variable
ε = συ, where σ > 0, |υ| ≤ η, η > 1 is some number, system (19) can be transformed into the system

N(υ) + O(σ|υ|) + h(σ, ϕt, F, ε, λ) = 0, (20)

where N(υ) = colon(G∗υ, f∗
m(υ)), f∗

m(υ) is a vector-form of degree m with respect to υ, G∗ is a matrix,
rankG∗ = ω, lim

σ→0
O(σ|υ|) = 0, lim

x→0
h(σ, ϕt, F, ε, λ) = 0 uniformly with respect to |υ| ≤ η, | ϕt| ≤ δ∗,

ε ∈ E(δ∗), λ ∈ Λ(δ∗).
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Theorem 5. Let N(υ) �= 0 for all |υ| = 1. Then there exists a number d > 0 such that for any
vector-function F (t) ∈ C(d, k), any fixed λ ∈ Λ(δ∗), in any neighborhood of the point ε = 0, there
exists a set such that for any of its point ε, solution ϕt = ϕ(t, ϕ0, F, ε, λ) to system (1′′) is not
T -periodic.

Proof is based on the fact that there exists a number b > 0 satisfying inequality |N(υ)| ≥ b on the set
{υ : |υ| = 1}. Then numbers d > 0, σ can be chosen in such a way that for all F (t) ∈ C(d, k), λ ∈ Λ(δ∗),
|υ| = 1 and, consequently, any ε = συ, we have |N(υ) + O(σ|υ|) + h(σ, ϕt, F, ε, λ)| > 0. This means
that the solution ϕt = ϕ(t, ϕ0, F, ε, λ) is not T -periodic. �

Thus, we assume that there exists a vector υ∗(|υ∗| = 1) such that N(υ∗) = 0. Using Taylor’s formula
in the neighbourhood of point υ∗ for vector-form f∗

m(υ), and the change of variables υ − υ∗ = z, |z| ≤ Δ,
Δ ∈ (0, 1), we rewrite system (20) in the form

S∗z +
m∑

k=2

P ∗
k (υ∗, z) + O(σ|υ|) + h(σ, ϕt, F, ε, λ) = 0,

where S∗ = colon(G∗, G∗∗(υ∗)) is a matrix, G∗∗(υ∗) is a value of Jacobi matrix for vector-form f∗
m(υ) at

point υ∗, P ∗
k (υ∗, z) is a vector-form of degree k with respect to z.

Theorem 6. Let rankD(e∗) = n, rankS∗ = p. Then system (1′), (1′′) has nonzero T -periodic
solution.

Proof is similar to that of Theorem 4.

Suppose that the rank of matrix D(e∗) in system (16) is r1, 0 ≤ r1 < n. Then with the help of
elementary transformations and the change of variables τ = ρ1e, ρ1 > 0, |e| ≤ η1, η1 > 1 is some
number, we reduce system (16) to the system whose main term is defined by equality D∗(e) =
colon(D(1)(e∗)e, P ∗

k∗(e∗, e)), P ∗
k∗(e∗, e) is a vector-form of degree k∗ with respect to vector e pro-

vided that P ∗
k (e∗, e) ≡ 0 for 0 ≤ k < k∗, P ∗

k∗(e∗, e) is not identically zero on the set {e : |e| = 1},
rankD(1)(e∗) = r1.

Let there exist a vector e, |e| = 1 satisfying equality D∗(e) = 0. Using Taylor’s formula in the
neighborhood of point e for P ∗

k∗(e∗, e), we get that matrix of linear (with respect to e− e = Δe) summand
of transformed system (16) has the form Q = colon(D(1)(e∗), P ∗(e)) where P ∗(e) is a value of Jacobi
matrix for vector-form P ∗

k∗(e∗, e) at point e.

Theorem 7. Let rankQ = n, rankG = p. Then system (1′), (1′′) has nonzero T -periodic solution.

Theorem 8. Let rankQ = n, rankS∗ = p. Then system (1′), (1′′) has nonzero T -periodic solution.

Proofs of Theorems 7 and 8 are similar to that of Theorem 4.

Remark. 1) In the above theory concerning the search of existence conditions for nonzero periodic
solution to system (1′), (1′′), we solve the problem of vanishing of n−rth column of matrix M(ϕt, F, ε, λ)
of system (11). The existence conditions for nonzero periodic solution to system (1) can also be obtained
when solving the problem of vanishing of any column of matrix M(ϕt, F, ε, λ), and even several columns
simultaneously.

2) If at least one of the inequalities rankQ < n, rankS∗ < p is fulfilled, one can use the procedure
of obtaining the existence (non-existence) conditions for periodic solutions to system (1′), (1′′) even
further on.
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Example. Consider a system of the form

ẋ = (B(t, λ) + X(t, ϕ, x, ε, λ))x, ϕ̇ = μ(t, ε) + Φ(t, ϕ, x, ε, λ), (21)

where t ∈ [0, 2π], ϕ ∈ E2, x ∈ E3, ε ∈ E2, λ ∈ E4,

B(t, λ) =

⎛

⎜
⎜
⎜
⎝

λ2
1 cos2 t λ1λ3(1 − sin 2t) λ1λ2 + 2λ1λ3 + λ2λ4 − 4λ2

4 + λ3
4 cos t,

λ1λ4 sin2 t λ2λ3(1 − cos t) 2λ2
1 + λ2λ4 + 2λ1λ3 − 5λ1λ4 + λ1λ2 sin t

λ2λ3 sin2 4t λ1λ4(2 − cos 2t) λ2
2 + λ1λ2 + 2λ2λ4 − 4λ3λ4 + λ1λ3 cos 2t

⎞

⎟
⎟
⎟
⎠

,

X(t, ϕ, x, ε, λ) =

⎛

⎜
⎜
⎜
⎝

x1x2 cos t x1x3ε2λ3 x2x3λ1 sin t

x2x3 sin t cos ϕ1 x1x3 cos 2t x1x2 sin2 ϕ1

x1x2ε1λ1 cos ϕ2 x2
1x2ε1λ4 sin t cos ϕ2 x3ε2λ4 sin 4t

⎞

⎟
⎟
⎟
⎠

,

μ(t, ε) =

⎛

⎝2ε1 cos2 t + 3ε2
1(1 − sin 3t) + 4ε2

2(3 + cos t)

ε2 sin2 t + 4ε2
1 cos2 t + 2ε2

2 sin2 t

⎞

⎠ ,

Φ(t, ϕ, x, ε, λ) =

⎛

⎝x1λ1 cos ϕ1 + x1x3ε1 sin t

x1x2 sin t + x2x3λ3 cos ϕ2

⎞

⎠ .

By direct calculations, we find

∫ 2π

0
μ(t, ε)dt =

⎛

⎝2πε1 + 3ε2
1 + 12ε2

2

πε2 + 4πε2
1 + 2πε2

2

⎞

⎠ , G =

⎛

⎝2π 0

0 π

⎞

⎠ , w2(λ) =

⎛

⎜
⎜
⎜
⎝

λ1λ2 + 2λ1λ3 + λ2λ4 − 4λ2
4

2λ2
1 + λ2λ4 + 2λ1λ3 − 5λ1λ4

λ2
2 + λ1λ2 + 2λ2λ4 − 4λ3λ4

⎞

⎟
⎟
⎟
⎠

.

Letting λ = ρe, ρ > 0, we get

w2(e) =

⎛

⎜
⎜
⎜
⎝

e1e2 + 2e1e3 + e2e4 − 4e2
4

2e2
1 + e2e4 + 2e1e3 − 5e1e4

e2
2 + e1e2 + 2e2e4 − 4e3e4

⎞

⎟
⎟
⎟
⎠

, e = (e1, e2, e3, e4),

w2(e∗) = 0 for e∗ = (1, 1, 1, 1).
Using Taylor’s formula for w2(ε) in the neighborhood of point ε∗, we get w2(ε) = D(ε∗)τ + o(|τ |)

where τ = ε − ε∗,

D(ε∗) =

⎛

⎜
⎜
⎜
⎝

3 2 2 −7

1 1 2 −4

1 5 4 −2

⎞

⎟
⎟
⎟
⎠

.

Since conditions of Theorem 4 are fulfilled (rankD(ε∗) = 3, rankG = 2), we arrive at conclusion
that system (21) has a nonzero 2π-periodic solution.
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