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Abstract—We prove a complex analog of Sidelnikov’s integral inequality. In discrete case an
inequality turns into equality on the complex spherical semi-designs and only on them.
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1. MAIN RESULT

In 1974 V. M. Sidelnikov [1] proved two real inequalities. The first is simple, the second (even for
t = 2k) is difficult and meaningful. It seems important for comparison with the complex case to give the
inequality in [1].

Let 〈x, y〉 be an ordinary inner product in R
n, n ≥ 2, and ‖x‖2 =

√
〈x, x〉. Let k be a natural number,

U ⊂ R
n and μ be a measure on U such that

∫

U

‖x‖2k dμ(x) < ∞. Then the inequality

∫

U

∫

U
〈x, y〉2k dμ(x) dμ(y) ≥ ck

(∫

U
‖x‖2k dμ(x)

)2

(1)

holds, here ck = (2k − 1)!!/(n(n + 2) · · · (n + 2k − 2)). It is a strong result though the proof of [1] is
complicated. Paper [2] contains simpler proof and considers the case of equality.

Here we find an analog of inequality (1) in the complex case. For k > 1 we give the original proof of
the new inequality. In the space C

n we consider the same notation 〈z,w〉 for the inner product and the
norm ‖z‖2 = 〈z, z〉.

Theorem. Assume that U ⊂ C
n and μ is the measure on U such that

∫

U

‖z‖2k dμ(z) < ∞. Then the

inequality
∫

U

∫

U
|〈z,w〉|2k dμ(z) dμ(w) ≥ c̃k

(∫

U
‖z‖2k dμ(z)

)2

(2)

holds for

c̃k =
(

n + k − 1
k

)−1

=
k!

n(n + 1) · · · (n + k − 1)
. (3)
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2. PROOF OF THEOREM

First try to prove inequality (2) with the help of inequality (1). Consider z = x + iy, w = u + iv, here
x, y, u, v ∈ R

n, i is the imaginary unit. Then
∣
∣〈z,w〉

∣
∣2 =

(
〈x, u〉 + 〈y, v〉

)2 +
(
〈y, u〉 − 〈x, v〉

)2
.

In the case of k = 1 the integral of
∣
∣〈z,w〉

∣
∣2k equals the sum of two integrals, each of which is subject

to inequality (1). The result is (2) with k = 1.
In the case of k > 1 we need the new proof. Then the constant c̃k in (2) is smaller than the constant

ck of (1) for k > 1 (Section 4). We give the cases when inequality (2) turns into equality (Sections 3
and 4).

In order to prove the main theorem we need certain auxiliary statements and constructions.
Let Ωn = {z ∈ C

n | ‖z‖ = 1} be a unit sphere in C
n. Let ω be a measure on Ωn, invariant under

rotations, ω(Ωn) = 1.
In [3] (P. 25) one can find the integral

I(α, β) :=
∫

Ωn

zαzβ dω(z) =

{
0, α 	= β;
(n−1)!α!

(n+|α|−1)! , α = β.
(4)

Here α = (α1, . . . , αn), β = (β1, . . . , βn) are multi-indices, zα = zα1
1 · · · zαn

n , zβ = zβ1
1 · · · zβn

n , |α| =
α1 + · · · + αn, α! = α1! · · ·αn!.

Let us introduce the space Hom (k), consisting of generalized polynomials, for a natural k:

Q(z) =
∑

|α|=|β|=k

q(α, β)zαzβ, z ∈ C
n,

here q(α, β) are arbitrary complex coefficients. Let

F (z) =
∑

|α|=|β|=k

f(α, β)zαzβ (5)

be a polynomial of Hom (k). We introduce the scalar product

[Q,F ] =
∑

|α|=|β|=k

q(α, β)f(α, β)
c(α)c(β)

, where c(α) =
k!
α!

.

The complex conjugation over the left factor q(α, β) ensures important condition (6). In the real case
the similar scalar product can be found in [4]. We introduce the polynomial

ρw(z) = |〈w, z〉|2k = 〈w, z〉k〈z,w〉k =
∑

|α|=|β|=k

r(α, β)zαzβ,

for a fixed w ∈ C
n, here r(α, β) = c(α)c(β)wαwβ . The condition

[ρw, F ] =
∑

|α|=|β|=k

r(α, β)f(α, β)
c(α)c(β)

= F (w) (6)

holds.
Consider the polynomial of Hom (k)

ωk(z) = ‖z‖2k =
∑

|α|=k

c(α)zαzα. (7)

Lemma. The equality [ωk, ωk] = 1/c̃k holds for the polynomial ωk(z), here c̃k is defined by
formula (3).
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Proof. For polynomial (7) the coefficients q(α, β) vanish for α 	= β and q(α,α) = c(α). Hence

[ωk, ωk] =
∑

|α|=k

c(α)c(α)
c(α)c(α)

=
∑

|α|=k

1.

The number of multi-indices α such that |α| = k, equals
(

n + k − 1
k

)
=

1
c̃k

. �

Proof of Theorem. Inequality (2) is nothing else but the Cauchy–Schwartz equation [A,A][ωt, ωt] ≥
[A,ωt]2, applied to the polynomials

A(z) =
∫

U
ρw(z) dμ(w), ωk(z) = ‖z‖2k.

Really, one can write down

A(z) =
∑

|α|=|β|=k

c(α)c(β)M(α, β)zαzβ, here M(α, β) =
∫

U
wαwβ dμ(w).

We scalarly multiply A by an arbitrary polynomial F of the type (5). Then

[A,F ] =
∑

|α|=|β|=k

M(α, β)f(α, β) =
∫

U
F (w) dμ(w).

Hence

[A,A] =
∫

U
A(w) dμ(w) =

∫

U

∫

U
|〈z,w〉|2k dμ(z) dμ(w),

[A,ωk] =
∫

U
ωk(w) dμ(w) =

∫

U
‖w‖2k dμ(w).

Moreover, [ωk, ωk] = 1/c̃k by Lemma 1. Put the inner products into Cauchy–Schwartz inequality and
multiply it by c̃k. We obtain inequality (2). �

Proof of Theorem yields the condition under which inequality (2) turns into equality.

Proposition 1. Assume that Ik =
∫

U

‖w‖2k dμ(w). (2) turns into equality if and only if the

following relation holds:
∫

U
|〈z,w〉|2k dμ(w) = c̃kIk‖z‖2k, z ∈ C

n. (8)

Proof. Cauchy–Schwartz inequality turns into equality if and only if there exists a constant λ such that
A = λωk. We multiply this relation scalarly by ωk. Then [A,ωk] = λ[ωk, ωk]. In the proof of Theorem we
can see that [A,ωk] = Ik, [ωk, ωk] = 1/c̃k . Hence λ = c̃kIk. The equality A = c̃kIkωk in expanded form
is (8).

3. AN EXAMPLE OF THE EQUALITY

Let U = Ωn be a unit sphere in C
n, μ = ω be a rotation invariant measure on the sphere, ω(Ωn) = 1.

Then we may replace z with ‖z‖e1 in integral (8), here e1 = (1, 0, . . . , 0). Then 〈e1, w〉 = w1 and for any
z ∈ C

n

∫

Ωn

|〈z,w〉|2k dω(w) = ‖z‖2k

∫

Ωn

|w1|2k dω(w)
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= ‖z‖2k

∫

Ωn

wk
1wk

1 dω(w) = ‖z‖2k (n − 1)!k!
(n + k − 1)!

= c̃k‖z‖2k .

Here we apply formula (4). Moreover,

Ik =
∫

Ωn

‖w‖2k dω(w) =
∫

Ωn

dω(w) = 1.

So we have equality (8). Thus in the case of U = Ωn, μ = ω inequality (2) turns into an equality.
Real inequality (1) turns into equality if U = Sn−1 is the unit sphere in R

n. This fact can be found
in [1].

4. DISCRETE ANALOG OF SIDELNIKOV INEQUALITY

The discrete variant appears for finite set U = {z1, . . . , zm} in C
n, μ

(
{zi}

)
= Wi > 0. Without loss of

generality assume that
m∑

i=1
Wi = 1. The inequality appears more expressive if we assume that the points

{zi} belong to the unit sphere Ωn. Here inequality (2) turns into
m∑

i=1

m∑

j=1

WiWj|〈zi, zj〉|2k ≥ c̃k, (9)

here k is an arbitrary natural number, c̃k is given by (3). The points {zi} on the sphere Ωn are not
necessarily mutually different. Inequality (9) was proved in [5] in the equal weight case and with the
wrong constant.

Condition of equality for (9) follows from Proposition 1. In our case Ik = (W1 + · · · + Wm)2 = 1.

Proposition 2. Inequality (9) is an equality if and only if the sequence {zi}m
i=1 on the sphere Ωn

and the weight sequence {Wi}m
i=1, W1 + · · · + Wm = 1 admit the relation
m∑

i=1

Wi|〈zi, z〉|2k = c̃k‖z‖2k, z ∈ C
n. (10)

Definition. The sequence of points {zi}m
i=1 on the sphere Ωn is called the complex spherical semi-

design of order 2k with weights Wi > 0, W1 + · · · + Wm = 1, if (10) holds.

So discrete Sidelnikov inequality (9) turns into equality on the spherical semi-designs of order 2k
and only on them. Vectors {zi} and weights {wi} constitute the semi-design of order 2k if the following
equality holds:

m∑

i=1

m∑

j=1

WiWj

∣
∣〈zi, zj〉

∣
∣2k = c̃k.

In the real case the notion of the weighted spherical semi-design appeared in [6], and the notion of
weighted design was introduced in [7]. The sequence {xi}m

i=1 of vectors on the sphere Sn−1 in R
n is said

to be a spherical weighted semi-design of order 2k if
m∑

i=1

Wi〈xi, x〉2k = ck‖x‖2k, x ∈ R
n,

here ck = (2k − 1)!/
(
n(n + 2) · · · (n + 2k − 2)

)
. The constants ck and c̃k are subject to the relations

c1 = c̃1 = 1/n, and for k ≥ 2 we have the inequalities

c̃k =
k−1∏

s=0

s + 1
n + s

< ck =
k−1∏

s=0

2s + 1
n + 2s

for n ≥ 2.
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Thus for k = 1 real semi-designs are simultaneously complex semi-designs (of the same weights Wi),
but for k > 1 this does not hold true.

The simplest semi-design is the triple of vectors x1, x2, and x3 on the circle S1, with the angles
equal 120◦. Such vectors constitute semi-design of order 2 in both real and complex cases (of weights
W1 = W2 = W3 = 1

3 ).

Consider the example of the semi-design of complex order 4 with equal weights.

Assume that n = 2, m = 4. Consider the following vectors in the space C
2:

v1 =

⎡

⎣ 1

−λ(1 + i)

⎤

⎦ , v2 =

⎡

⎣ 1

λ(1 + i)

⎤

⎦ , v3 =

⎡

⎣−λ(1 + i)

1

⎤

⎦ , v4 =

⎡

⎣λ(1 + i)

1

⎤

⎦ ,

here λ is yet unknown parameter. The norms of all the vectors vk equal ‖vk‖ =
√

1 + 2λ2. Put
zk = vk/‖vk‖, k = 1, . . . , 4. We now compute the inner products

〈v1, v2〉 = 1 − 2λ2, 〈v1, v3〉 = −2λ, 〈v1, v4〉 = −2iλ, 〈v2, v3〉 = 2λ, 〈v2, v4〉 = 2λ, 〈v3, v4〉 = 1 − 2λ2.

Choose λ so that 2λ2 − 1 = 2λ, i.e., λ = (1 +
√

3)/2. Then for k 	= l

∣∣〈vk, vl〉
∣∣ = 2λ = 1 +

√
3,

∣∣〈zk, zl〉
∣∣ =

1√
3
.

The system of vectors {z1, . . . , z4} is complex semi-design of order 4 if we have equal values

S4 =
4∑

k,l=1

∣∣〈zk, zl〉
∣∣4 and c̃2m

2 = 16c̃2 =
16
3

.

We have S4 = 4 + 12(
√

3)−4 = 16
3 . Hence {z1, . . . , z4} is the semi-design of order 4. At the same time

this system is the semi-design of order 2 abut not the semi-design of order 6.

5. INTEGRAL CHARACTERISTICS OF SPHERICAL SEMI-DESIGNS

Proposition 3. The sequence {zi}m
i=1 on the sphere Ωn is complex spherical semi-design of order

2k with weights Wi > 0, W1 + · · · + Wm = 1 if and only if the equality
∫

Ωn

F (z) dω(z) =
m∑

i=1

WiF (zi) (11)

holds for any generalized polynomial F of Hom (k).

Proof. Assume that (10) holds. We can rewrite it as follows:
m∑

i=1

Wi〈zi, z〉k〈z, zi〉k = c̃k〈z, z〉k, z ∈ C
n.

Expand the inner products and obtain
m∑

i=1

Wi

∑

|α|=k

k!
α!

zα
i zα

∑

|β|=k

k!
β!

zβzβ
i = c̃k

∑

|α|=k

k!
α!

zαzα.

The system of functions {zβzα | |α| = |β| = k} is linearly independent on C
n, so we may equate the

coefficients with zβzα. This leads us to identities
m∑

i=1

Wiz
α
i zβ

i = 0 for α 	= β, (12)
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m∑

i=1

Wiz
α
i zα

i = c̃k
α!
k!

for |α| = k. (13)

These relations are equivalent to condition (11). Indeed, consider the functions F (z) = zαzβ , here
|α| = |β| = k. Then condition (11) turns into

I(α, β) :=
∫

Ωn

zαzβ dω(z) =
m∑

i=1

Wiz
α
i zβ

i . (14)

We obtain for α 	= β by (4) and (12) the relation I(α, β) = 0 =
m∑

i=1
Wiz

α
i zβ

i . If α = β, then

I(α,α) =
(n − 1)!α!

(n + k − 1)!
=

m∑

i=1

Wiz
α
i zα

i .

The latter equality holds because it is simply another form of equality (13). This establishes equality (14)
and sufficiency of the statement. The necessity of statement can be established simply by “reversing”the
order of consideration of arguments.
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lidischen Raum”, Mat. Sb. 95, No. 1, 148–158 (1974) [in Russian].
2. Kotelina, N. O., Pevnyi, A. B. “Sidel’nikov Inequality”, St. Petersburg Math. J. 26, No. 2, 351–356 (2015).
3. Rudin, W. Function Theory in the Unit Ball of C

n (Springer-Verlag, Heidelberg, Berlin, 1980; Mir, Moscow,
1984).
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