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INTRODUCTION

We consider linear integral equation of the third kind with fixed singularities in its kernel (E3KFS)

Ax ≡ x(t)
l∏

j=1

(t − tj)mj +
∫ 1

−1
K(t, s) [(s + 1)p1(1 − s)p2]−1 x(s)ds = y(t), (1)

where t ∈ I ≡ [−1, 1], tj ∈ (−1, 1), mj ∈ N, j = 1, l; p1, p2 ∈ R
+, K and y are given continuous

functions satisfying certain pointwise restrictions on their smoothness, x(t) is the desired function, and
the integral is understood as the Hadamard’s finite part ([1], pp. 144–150). Equations of type (1) are
becoming more widely used both in theoretical investigations and in applications. A number of important
problems of theory of elasticity, neutron transfer, scattering of particles (see, e.g., [2, 3]and references in
[2] and [4]), and also theory of differential equations of mixed type [5] are reducible to the equations of
this type.

The intrinsic classes of solutions of the equations of third kind are, as a rule, special spaces of
generalized functions (SGF) of types D and V . The space of type D (correspondingly, V ) is constructed
by terms of the Dirac delta-function (correspondingly, the Hadamard’s finite part of an integral). The
equations under consideration have explicit solutions in very rare cases. Therefore, the development
of theoretically proved and effective methods for their approximate solving in SGF is actual subject of
mathematical analysis and computational mathematics. A number of results of this kind is obtained
in the works [6–9], where certain direct methods for solving of E3KFS (1) in the space of type D are
introduced and substantiated. The first results of approximate solution of E3KFS in SGF of type V
are obtained in [10], where the authors developed and substantiate a “polynomial” method for solving of
Eq. (1) in certain space X of generalized functions.

In the present paper we establish certain generalized variants of collocation method, which are
adapted for approximate solving E3KFS (1) in class X. The focus is on substantiation the methods
in the sense of book [11] (Chap. 1). We prove theorems on existence and uniqueness of solution of
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SPECIAL VARIANTS OF COLLOCATION METHOD 39

corresponding approximate equation, establish bounds for error of approximate solution, and prove
convergence of the successive approximations to the exact solution in SGF X. We consider also stability
and conditionality of approximating equalities.

1. MAIN SPACES

Let C ≡ C(I) be a space of all continuous on I functions with customary max-norm, and m ∈ N.

According to [12], we say that a function f ∈ C belongs to the class C{m; 0} ≡ C
{m}
0 (I) if at point t = 0

function f has Taylor derivative f{m}(0) of order m (we assume that C{0; 0} ≡ C). In the norm

‖f‖C{m;0} ≡ ‖Tf‖C +
m−1∑

i=0

|f{i}(0)|,

where

Tf ≡
[
f(t) −

m−1∑

i=0

f{i}(0)
ti

i!

]
1
tm

≡ F (t) ∈ C, F (0) ≡ lim
t→0

F (t),

the space C{m; 0} is complete and normally embedded into C (see, e.g., [13], P. 14).

Moreover, let p ∈ R
+ and g ∈ C. According to [12], we say that g ∈ C{p; 1} ≡ C

{p}
1 (I) if there exist

left Taylor derivatives g{j}(1), j = 1, [p], at the point t = 1, and for p �= [p] (here [·] stands for entire part)
the limit exists

lim
t→1−

{[
g(t) −

[p]∑

j=0

g{j}(1)
(t − 1)j

j!

]
(1 − t)−p

}
.

We equip the space C{p; 1} with the norm

‖g‖{p} ≡ ‖g‖C{p;1} ≡ ‖Sg‖C +
λ∑

i=0

|g{i}(1)|, (2)

where

Sg ≡
[
g(t) −

λ∑

i=0

g{i}(1)
(t − 1)i

i!

]
(1 − t)−p ≡ G(t) ∈ C, (3)

λ = λ(p) ≡ [p] − (1 + sign([p] − p)), G(1) ≡ lim
t→1−

G(t). Note that the space C{p; 1} consists of func-

tions g(t) = (1 − t)pG(t) +
λ∑

i=0
bi(t − 1)i, where G = Sg ∈ C, bi = g{i}(1)/i!, i = 0, λ. Clearly, the

space C{p; 1} with norm (2) is complete and embedded into C.
Now we define the main for our investigations space

Y ≡ C
{m};{p}
0;1 ≡ C

{m};{p}
0;1 (I) ≡ {y ∈ C{m; 0} | Ty ∈ C{p; 1}} .

We equip it with norm

‖y‖Y ≡ ‖Ty‖{p} +
m−1∑

i=0

|y{i}(0)|, y ∈ Y. (4)

Lemma 1 ([6]). i) There is valid the relation

ϕ ∈ Y ⇔ ϕ(t) = (UV Φ) (t) + tm
λ∑

j=0

dj(t − 1)j +
m−1∑

i=0

eit
i, (5)
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40 GABBASOV, ZAMALIEV

where Φ = STϕ ∈ C, ϕ{i}(0) = eii!, i = 0,m − 1, (Tϕ){j}(1) = djj!, j = 0, λ, Uf ≡ tmf(t), V f ≡
(1 − t)pf(t).

ii) The space Y with norm (4) is complete and embedded into C{m; 0}.

Let υ ∈ C(I2), and for any fixed s ∈ I the function υ(t, s) belongs to the space C{p; 1}. We write

υ ∈ C
{p}
t (I2) if Stυ ∈ C, where St is operator (3) applied in variable t. In analogous way we define the

class C
{p}
s (I2). Then

C
{p}
1 (I2) ≡ C

{p}
t (I2) ∩ C{p}

s (I2).

Then we consider on the main space Y the family X ≡ V {p}{m; 0} of generalized functions x(t)
representable as

x(t) ≡ z(t) +
m−1∑

i=0

γi P. F. t−k, (6)

where t ∈ I, z(t) ∈ C{p; 1}, γi ∈ R are arbitrary constant values, and P. F. t−k are generalized functions
defined on the space Y by rule

(P. F. t−k, y) ≡ P. F.
∫ 1

−1
y(t)t−kdt, y ∈ Y, k = 1,m.

Here the symbol P. F. stands for the Hadamard finite part of integral ([1], pp. 144–150). In what follows
we omit this symbol for brevity. Clearly, the vector space X is the Banach space with respect to the norm

‖x‖X ≡ ‖z‖{p} +
m−1∑

i=0

|γi|. (7)

2. COLLOCATION IN TERMS OF THE BERNSTEIN POLYNOMIALS

Let E3KFS (1) be given. We put for simplicity l = 1, t1 = 0, p1 = 0, i.e., we consider the equation

Ax ≡ (Ux)(t) + (Kx)(t) = y(t), t ∈ I, (8)

Kx ≡
∫ 1

−1
K(t, s)(1 − s)−px(s)ds,

where m ∈ N, p ∈ R
+; y ∈ Y , K is a given function satisfying restrictions

K ∈ C{p}
s (I2), ψi(t) ≡ K{i}

s (t, 1) ∈ Y, i = 0, λ,

u ≡ SsK ∈ C
{m}
t (I2), θi(s) ≡ u

{i}
t (0, s) ∈ C{m; 0}, i = 0,m − 1,

υ ≡ Ttu ∈ C
{p}
t (I2), ϕi(s) ≡ υ

{i}
t (1, s) ∈ C{m; 0}, i = 0, λ,

h ≡ Stυ ∈ C{m}
s (I2),

(9)

and x ∈ X is the desired generalized function. Fredholm properties and sufficient conditions for
continuous invertibility of operator A : X → Y are established in [10]; a method for evaluation of exact
solution of E3KFS (1) in class X is described in the same paper.

We seek approximate solution to Eq. (8) in the form

xn ≡ xn(t; {cj}) ≡ gn(t) +
m−1∑

i=0

ci+λ+n+2t
−i−1, (10)

gn(t) ≡ (V zn)(t) +
λ∑

i=0

ci+n+1(t − 1)i, (11)
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zn(t) ≡ 1
2n

n∑

i=0

ci

(
n

i

)
(t + 1)i(1 − t)n−i, n ∈ N, (12)

where
(n

i

)
, i = 0, n, are binomial coefficients. Unknown parameters cj = c

(n)
j , j = 0, n + m + λ + 1, are

found from the system of linear algebraic equations (SLAE)

ρ{i}n (0) = 0, (Tρn){j}(1) = 0, ck = (STy − STKxn) (νk), (13)

i = 0,m − 1, j = 0, λ, k = 0, n,

where ρn(t)≡ρA
n (t)≡(Axn − y)(t) is discrepancy of the approximate solution, and points νk = ν

(n)
k ∈ I

are given by the formula

νk = −1 +
2k
n

, k = 0, n. (14)

For computation algorithm (8), (10)–(14) there is valid

Theorem 1. If the homogeneous E3KFS Ax = 0 has in X only null solution (for instance, under
assumptions of the theorem 2 from [10]), then for any n ∈ N (n � n0) SLAE (13) has a unique
solution {c∗j}, and the sequence of approximate solutions x∗

n ≡ xn(t; {c∗j}) converges to exact
solution x∗ = A−1y in norm of space X with the rate

‖x∗
n − x∗‖ = O

{
ωt(h;n−1/2) +

λ∑

j=0

ω(αj ;n−1/2) +
m−1∑

i=0

ω(βi;n−1/2) + ω(STy;n−1/2)
}

, (15)

where ω(f ;Δ) is modulus of continuity of function f ∈ C with step Δ (0 < Δ � 2), and ωt(h;Δ)
is partial modulus of continuity of function h(t, s) in variable t; h ≡ Stυ, αj ≡ STψj , j = 0, λ,
βi ≡ STΦi, i = 0,m − 1, and

Φi(t) ≡
∫ 1

−1
K(t, s)(1 − s)−ps−i−1ds ∈ Y, i = 0,m − 1.

Proof. We consider E3KFS (8) as linear operator equation

Ax ≡ Ux + Kx = y, x ∈ X ≡ V {p}{m; 0}, y ∈ Y ≡ C
{m};{p}
0;1 , (16)

where the operator A : X → Y is continuously invertible.

Let Xn ⊂ X be an (n + m + λ + 2)-dimensional subspace consisting of elements (10), and Yn ⊂ Y

is the class Hn+m+λ+1 ≡ UV (Πn) ⊕ Πm+λ, where Πl ≡ span{ti}l
0. Then we introduce linear operator

Γn ≡ Γn+m+λ+1 : Y → Yn by the rule

Γny ≡ Γn+m+λ+1(y; t) ≡ (UV BnSTy)(t) +
λ∑

j=0

(Ty){j}(1)tm(t − 1)j
1
j!

+
m−1∑

i=0

y{i}(0)
ti

i!
, (17)

where Bn : C → Πn is the Bernstein operator ([14], P. 407) with nodes (14). Let us show first that
system (10)–(13) is equivalent to the following functional equation:

Anxn ≡ Uxn + ΓnKxn = Γny, xn ∈ Xn, Γny ∈ Yn. (18)

Indeed, let x∗
n ≡ xn(t; {c∗j}) be a solution to Eq. (18), i.e., Ux∗

n + ΓnρK
n = 0, ρK

n ≡ Kx∗
n − y. By virtue

of (10) and (17) the latter means that

(UV (z∗n + BnSTρK
n ))(t) +

λ∑

j=0

[
c∗j+n+1 + (TρK

n ){j}(1)/j!
]
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× tm(t − 1)j +
m−1∑

i=0

[
c∗i+λ+n+2t

m−i−1 + (ρK
n ){i}(0)ti/i!

]
≡ 0. (19)

Representation (5) implies the equivalence of identity (19) and the system

z∗n(t) ≡ (Bn(STy − STKx∗
n)) (t), (TρK

n ){j}(1) = −c∗j+n+1j!, j = 0, λ,

(ρK
n ){i}(0) = −c∗m−1−i+λ+n+2i!, i = 0,m − 1.

(20)

Both sides of the first equality of system (20) contain Bernstein polynomials of certain functions with
meanings correspondingly c∗i and (STy − STKx∗

n)(νi), i = 0, n, at points (14). Then due to (16), (10),
(11) and (3) we have (TρA

n ){j}(1) = c∗j+n+1j! + (TρK
n ){j}(1), j = 0, λ, and (ρA

n ){i}(0) = (ρK
n ){i}(0) +

c∗m−1−i+λ+n+2i!, i = 0,m − 1. Hence, system (20) implies relations

c∗i = (STy − STKx∗
n)(νi), i = 0, n, (TρA

n ){j}(1) = 0, j = 0, λ,

(ρA
n ){i}(0) = 0, i = 0,m − 1.

(21)

Thus, SLAE (13) has solution ci = c∗i , i = 0, n + m + λ + 1, i.e., a solution to Eq. (18) is a solution
to system (10)–(13).

The inverse proposition becomes clear after multiplication of the corresponding equations in (21) by
factors 2−n

(n
i

)
(t + 1)i(1 − t)n−i, i = 0, n, and their term-by-term addition.

Consequently, for the proof of Theorem 1 it suffices to establish existence, uniqueness and conver-
gence of solutions to Eqs. (18). For this purpose we need the following approximative property of the
operator Γn.

Lemma 2. Any function y ∈ Y satisfies the estimate

‖y − Γny‖Y � d1ω(STy;n−1/2). (22)

Here and in what follows di, i = 1, 3, stand for constants, which are independent of the parame-
ter n.

Lemma 2 follows from relations (5), (17), (4) and bound ([14], P. 245)

‖f − Bnf‖C � d1ω(f ;n−1/2), f ∈ C. (23)

Let us find now a characteristic of closeness of operators A and An on Xn. By virtue of (16), (18), (5),
(17), (4) and (2) we consequently find for arbitrary element xn ∈ Xn

‖Axn − Anxn‖Y = ‖Kxn − ΓnKxn‖Y = ‖STKxn − BnSTKxn‖C . (24)

As is known [10],

STKxn =
∫ 1

−1
h(t, s)gn(s)ds +

λ∑

j=0

λj(gn)αj(t) +
m−1∑

i=0

ci+λ+n+2βi(t), (25)

where

λj(g) ≡
∫ 1

−1
(Sg)(s)(s − 1)j

1
j!

ds +
λ∑

k=0

g{k}(1)βjk,

βjk ≡
∫ 1

−1
(s − 1)j+k 1

j!k!
(1 − s)−pds, j, k = 0, λ.

We deduce by virtue of (25) and (23)

‖STKxn − BnSTKxn‖C = max
t∈I

∣∣∣∣
∫ 1

−1
(h − Bt

nh)(t, s)gn(s)ds
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+
∑

j

λj(gn)(αj − Bnαj)(t) +
∑

i

ci+λ+n+2(βi − Bnβi)(t)
∣∣∣∣

� 2d1‖gn‖Cωt(h;n−1/2) + d1

∑

j

|λj(gn)|ω(αj ;n−1/2) + d1

∑

i

|ci+n+λ+2|ω(βi;n−1/2)

� 2p+1d1‖gn‖{p}ωt(h;n−1/2)+

+ d1‖gn‖{p}(2λ+1 + β)
∑

j

ω(αj ;n−1/2) + d1‖xn‖X

∑

i

ω(βi;n−1/2)

� d1‖xn‖
{

2p+1ωt(h;n−1/2) + (2p+1 + β)
∑

j

ω(αj ;n−1/2) +
∑

i

ω(βi;n−1/2)
}

� d2

{
ωt(h;n−1/2) +

∑

j

ω(αj ;n−1/2) +
∑

i

ω(βi;n−1/2)
}
‖xn‖. (26)

We use here the notation β ≡ max
0�j,k�λ

|βjk|, d2 ≡ d1(2p+1 + β). Hence, relations (24) and (26) yield

εn ≡ ‖A − An‖Xn→Y � d2

{
ωt(h;n−1/2) +

∑

j

ω(αj ;n−1/2) +
∑

i

ω(βi;n−1/2)
}

. (27)

We conclude the proof of Theorem 1 by means of inequalities (22), (27) and theorem 7 from [11]
(P. 19). �

Corollary. If derivatives h
(r)
t , α(r)

j , β(r)
i and (STy)(r) (−1 � t, s � 1, r � 2) exist and are bounded, then

under assumptions of Theorem 1 we have ‖x∗
n − xn‖ = O(1/n).

3. COLLOCATION IN TERMS OF HERMITE–FEJÉR INTERPOLATION POLYNOMIALS

Let us seek approximate solution to problem (8), (9) in the form

xn(t) ≡ (1 − t)p
2n−1∑

i=0

cit
i +

λ∑

i=0

ci+2n(t − 1)i +
m−1∑

i=0

ci+λ+2n+1t
−i−1, (28)

where ci = c
(n)
i , i = 0,m + λ + 2n, are undetermined coefficients. We find them from the SLAE

ρ{i}n (0) = 0, (Tρn){j}(1) = 0, (STρn)(νk) = 0, (d(STUxn)/dt)(νk) = 0, (29)

i = 0,m − 1, j = 0, λ, k = 1, n,

where {νk} are the Chebyshev nodes of the first kind.

Let H2n+m+λ ≡ UV (Π2n−1) ⊕ Πm+λ, and Fn ≡ F2n+m+λ : Y → H2n+m+λ is a linear operator
mapping any function y ∈ Y onto element Fny uniquely defined by conditions

(STFny − STy)(νi) = 0, i = 1, n, (d(STFny)/dt)(νi) = 0, i = 1, n,

(TFny − Ty){j}(1) = 0, j = 0, λ, (Fny − y){i}(0) = 0, i = 0,m − 1.

Clearly,

Fny ≡ F2n+m+λ(y; t) ≡ (UV ΦnSTy)(t) +
λ∑

j=0

(Ty){j}(1)tm(t − 1)j
1
j!

+
m−1∑

i=0

y{i}(0)
ti

i!
, (30)

where Φn ≡ Φ2n−1 : C → Π2n−1 is the Hermite–Fejér operator ([14], P. 549) with respect to system
{νi}.
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Lemma 3. Let y ∈ Y , and STy ∈ Lip α (0 < α � 1). Then

‖y − Fny‖Y � d3n
−α/2.

Proof easily follows from equalities (5), (30), (4) and known bound (see, e.g., [15])

‖f − Φnf‖C � d3n
−α/2, f ∈ Lip α, 0 < α � 1.

For algorithm (8), (9), (28), (29) there is valid

Theorem 2. Let equation Ax = 0 have only trivial solution in X, h ≡ Stυ (by t), αj ≡ STψj , βi ≡
STΦi, j = 0, λ, i = 0,m − 1, STy ∈ Lip α, 0 < α � 1. Then for sufficiently large n the approximate
solutions x∗

n, which are determined by means of relations (28), (29), exist, are unique, and
converge to exact solution x∗ = A−1y in the space X with the rate ‖x∗

n − x∗‖ = O(n−α/2).

Proof can be obtained by means of repeating of the scheme of the proof of Theorem 1. In the present
case SLAE (29) is equivalent to linear operator equation Anxn ≡ FnAxn = Fny, xn ∈ X, Fny ∈ Yn,
where Xn is set of all xn of the form (28) such that (d(STUxn)/dt)(νi) = 0, i = 1, n, and the subspace
Yn consists of all elements yn ∈ H2n+m+λ with property (d(STyn)/dt)(νi) = 0, i = 1, n.

4. REMARKS

1. Our norm in X ≡ V {p}{m; 0} ensures that the convergence of a sequence (x∗
n) to x∗ = A−1y in

the norm of the space X implies its customary convergence in the space of generalized functions, i.e.,
the weak convergence.

2. The approximation of solutions to operator equations Ax = y causes a natural question on a rate
of convergence of the discrepancy ρA

n (t) ≡ (Ax∗
n − y)(t) of the method under consideration. One of that

results follows easily from Theorems 1 and 2. These theorems imply the following simple consequences:
1) if initial data (h, αj , βi, STy) of Eq. (8) belong to class C(r) (r − 1 ∈ N), then under assumptions
of Theorem 1 there is valid the bound ‖ρA

n ‖Y = O(n−1); 2) if the initial data belong to class Lip α,
0 < α � 1, then under assumptions of Theorem 2 we have ‖ρA

n ‖Y = O(n−α/2).
3. Since under assumptions of Theorems 1 and 2 the approximating operators An satisfy estimates

‖A−1
n ‖ = O(1), A−1

n : Yn → Xn, n � n1, obviously (see [11], pp. 23–24), our direct methods Eq. (8) are
stable with respect to small disturbances of initial data. Furthermore, if the equation is well-conditioned,
then SLAE (13) and (29) are well-conditioned, too.
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