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Abstract—We derive new refined geometrically nonlinear equations of motion for elongated rod-
type plates. They are based on the proposed earlier relationships of geometrically nonlinear theory
of elasticity in the case of small deformations and refined S. P. Timoshenko’s shear model. These
equations allow to describe the high-frequency torsional oscillation of elongated rod-type plate
formed in them when plate performs low-frequency flexural vibrations. By limit transition to the
classical model of rod theory we carry out transformation of derived equations to simplified system of
equations of lower degree.
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Cantilever beams with thickness h and width b which are much less than its length L are used as
the test samples in the theoretical-experimental method of determining the logarithmic decrements
(LD) of oscillation [1]. Logarithmic decrement of oscillation particularly uses to describe the damped
property of material. In papers [2–4] was described the method of determining the LD of material with
taking into account the aerodynamic damping. This method is based on the studies of the damped
flexural vibrations of test samples in the first fundamental mode of oscillation. In the study of forced
vibration of test samples on the second and third mode of flexural oscillation, the high frequency torsional
vibrations, which form sound waves in the environment, are observed. The theoretical study of such
flexural-torsional forms of vibrations of beams of this class based on known equations of motion for the
averaged bend theory of beams and rods is impossible due to the insufficient degree of their accuracy and
meaningfulness. Therefore, for the correct description of these mechanical effects the basic equations
of motion will rely on consistent variant of the geometrically nonlinear theory of elasticity at small
deformations, which previously was proposed and analyzed in a series of papers [5, 6]. According
to them, in rectangular Cartesian coordinates x1 = x, x2 = y, x3 = z the elongation ε1, ε2, ε3 and
shear γ12, γ13, γ23 deformations can be determined by kinematic relationships in incomplete quadratic
approximation

ε1 = E11 +
(
E2

12 + E2
13

)
/2, . . . , γ12 = E12 + E21 + E13E23, . . . , Eαβ = ∂uβ/∂xα, (1)

where u1 = U , u2 = V , u3 = W are components of the displacement vector u = Ue1 + V e2 + Wm.
For plates considered in this work the inequalities b/L � 1, h/L � 1, h/b ∼ 0.06÷ 0.3 are true. This

allows to consider them as blade-type rod with free end at x = L and fixed end at x = 0. Therefore, the
displacement vector U is taken as [7].

U = (u + zψ − yχ) e1 + (v − zϕ) e2 + (w + yϕ)m,

0 ≤ x ≤ L, −b/2 ≤ y ≤ b/2, −h/2 ≤ z ≤ h/2,
(2)
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where u, v, and w are components of the displacement vector of 0x axis points, ϕ, ψ, and χ components
of the rotation vector, which use in the shear model of Timoshenko beam theory.

In accordance with representation (2) and relationships Eαβ = ∂uβ/∂xα we obtain

E11 = u′ + zψ′ − yχ′, E12 = v′ − zϕ′, E13 = w′ + yϕ′,

E21 = −χ, E23 = ϕ, E31 = ψ, E32 = −ϕ, E22 = E33 = 0.

When use them it is reasonable to rewrite expression (1) as

ε1 = u′ +
[(

v′
)2 +

(
w′)2

]
/2 − y

(
χ′ − w′ϕ′) + z

(
ψ′ − v′ϕ′) , (3)

γ12 = v′ − χ + w′ϕ − zϕ′, γ13 = ψ + w′ − v′ϕ + yϕ′, (4)

γ23 ≈ 0, ε2 ≈ 0, ε3 ≈ 0. (5)

In accordance with relations (3)–(5), the variation of the strain energy will be equal

δΠ =
∫ L

0

∫ b/2

−b/2

∫ h/2

−h/2
(σ11δε1 + σ12δγ12 + σ13δγ23) dx dy dz

=
∫ L

0
(Qxδu′ + Q∗

yδv
′ + Q∗

zδw
′ + Myδψ

′ + Mzδχ
′ + Qzδψ − Qyδχ+M∗

xδϕ′ + N∗δϕ)dx, (6)

where we accept denotations

Q∗
y = Qy + Qxv′ − Qzϕ − Myϕ

′, Q∗
z = Qz + Qxw′ + Qyϕ − Mzϕ

′,

M∗
x = Mx − Mzw

′ − Myv
′, N∗ = Qyw

′ − Qzv
′,

and define internal forces and torques in the cross-section x = const which are expressed from stress

σ11, σ12, σ13 by the formulas
( b/2∫

−b/2

h/2∫

−h/2

(· · · )dy dz =
∫∫

F

(· · · )dF
)

.

Qx =
∫∫

F
σ11dF, Qy =

∫∫

F
σ12dF, Qz =

∫∫

F
σ13dF,

My =
∫∫

F
σ11zdF, Mz = −

∫∫

F
σ11ydF, Mx =

∫∫

F
(σ13y − σ12z)dF.

(7)

With z = 0 expression (2) takes the form

U|z=0 = (u − yχ) e1 + ve2 + (w + yϕ)m. (8)

Considering that aerodynamic forces found in the form of p (x, y) = p (x, y)m and using the (8) we
derive the expression for the variation of work of the external force

δA =
∫ L

0

∫ b/2

−b/2
pδU|z=0dx dy =

∫ L

0
(pδw + mxδϕ) dx, (9)

where P =
b/2∫

−b/2

p (x, y) dy, mx =
b/2∫

−b/2

p (x, y) y dy.

Using expression (2) we derive the next expression for the variation of kinetic energy of a body (t is a
time)

δK = −ρ

∫ L

0

∫ h/2

−h/2

∫ b/2

−b/2
δUdx dy dx = −

∫ L

0
[ρhb (üδu + v̈δv + ẅδw) + ρJpϕ̈δϕ]dx, (10)

where ϕ̈ = ∂2ϕ/∂t2, ρ is the density of plate material, Jp =
(
hb3 + bh3

)
/12 is the polar moment of inertia

of the cross-sectional area.
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According to the Hamilton–Ostrogradski principle and expressions (6), (9), (10) we derive in a
standard way the equations of motion

∂Qx

∂x
− ρbh

∂2u

∂t2
= 0,

∂Q∗
y

∂x
− ρbh

∂2v

∂t2
= 0,

∂Q∗
z

∂x
+ P − ρbh

∂2w

∂t2
= 0,

∂My

∂x
− Qz = 0,

∂Mz

∂x
+ Qy = 0,

∂M∗
x

∂x
− N∗ + mx − ρJp

∂2ϕ

∂t2
= 0,

(11)

for which we formulate the kinematic boundary conditions at x = 0

u = v = w = ψ = χ = ϕ = 0,

and the boundary conditions for force at x = L

Qx = 0, Q∗
y = 0, Q∗

z = 0, My = 0, Mz = 0, M∗
x = 0. (12)

In addition to Eqs. (5), we accept the hypothesis of a static theory of thin plates and shells σ33 = 0.
This allows to obtain physical relations for stress σ11, σ12, σ13 according to linear elastic deformations
under static deformation and the equality ε2 = 0 (E∗ = E1/(1 − ν12ν21))

σ11 = E∗ε1, σ12 = G12γ12, σ13 = G13γ13, (13)

where E1, ν12, ν21, G12, G13 are the module of elasticity, the Poisson ratios and shear modulus of
orthotropic material.

After the substitution of expressions (3), (4) into Eqs. (13) according to (7) we obtain

Qx = Ẽ∗bh

(
u′ +

(v′)2

2
+

(w′)2

2

)
, Qy = G̃12bh

(
v′ − χ + w′ϕ

)
,

Qz = G̃13bh
(
w′ + ψ − v′ϕ

)
, My = Dy

(
ψ′ − v′ϕ′) ,

Mz = Dz

(
χ′ − w′ϕ′) , Mx = Bpϕ

′,

(14)

where

Bp =
G̃13hb3 + G̃12bh

3

12
, Dy =

Ẽ∗bh3

12
, Dz =

Ẽ∗hb3

12
. (15)

The first of formulas (15), which characterizes the torsional stiffness of the cross-section, requires the
addition of a correction term that depends on the parameter h/b. It is known that this term for a beam of
isotropic material in the case of h/b ≤ 0.3 takes the form Bp = Gbh3/3, where G = G12 = G13.

Shear strain γ0
12, γ0

13 at the points of the planes x0z and x0y according to expression (4) take the form

γ0
12 = v′ − χ + w′ϕ, γ0

13 = ψ + w′ − v′ϕ. (16)

Application of the Bernoulli hypothesis requires the adoption of the equalities γ0
12 = γ0

13 = 0. According
to them, from (16) it follows

χ = v′ + w′ϕ, ψ = −w′ + v′ϕ, (17)

and relations (3), (4) are transformed to the following

ε1 = u′ +
1
2
[(

v′
)2 +

(
w′)2] − y

(
v′′ + w′′ϕ

)
− z

(
w′′ − v′′ϕ

)
,

γ12 = −zϕ′, γ13 = yϕ′.
(18)

Due to the established relations (18) for calculating the δΠ instead of (6) we arrive at the expression

δΠ =
∫ L

0
(Qxδu′ + Q∗

yδv
′ + Q∗

zδw
′ + M∗

z δv′′ + M∗
y δw′′+Mxδϕ′ + N∗δϕ)dx,

where

Q∗
y = Qxv

′, Q∗
z = Qxw

′, M∗
z = Mz − Myϕ, M∗

y = My + Mzϕ,
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N∗ = Mzw
′′ − Myv

′′

and instead of (14),

My = −
∫∫

F
σ11zdF = Dy

(
w′′ − ϕv′′

)
, Mz = −

∫∫

F
σ11ydF = Dz

(
v′′ + ϕw′′).

Thus, the use of (17) allow to reduce the system of six equations of motion (11) to the system of four
equations

∂Qx

∂x
− ρbh

∂2u

∂t2
= 0,

∂S∗
y

∂x
+ ρbh

∂2v

∂t2
= 0,

∂S∗
z

∂x
− P + ρbh

∂2w

∂t2
= 0,

∂Mx

∂x
− N∗ + mx − ρJp

∂2ϕ

∂t2
= 0,

(19)

where

S∗
y =

∂M∗
z

∂x
− Qxv

′, S∗
z =

∂M∗
y

∂x
− Qxw′.

For obtained Eq. (19) according to (17) we formulate the kinematic boundary conditions at x = 0

u = v = w = v′ = w′ = ϕ = 0,

and the boundary conditions for force at x = L

Qx = 0, S∗
y = 0, S∗

z = 0, M∗
y = 0, M∗

z = 0, Mx = 0.

In Eqs. (19) for the considered beams (h/b � 1) of plate type under the action of aerodynamic
loads one can neglect the bending in the plane x0y, assuming v ≡ 0. According to this equality for
unknowns S∗

z and N∗ in the remaining three equations of motion

∂Qx

∂x
− ρbh

∂2u

∂t2
= 0,

∂S∗
z

∂x
− P + ρbh

∂2w

∂t2
= 0,

∂Mx

∂x
− N∗ + mx − ρJp

∂2ϕ

∂t2
= 0 (20)

the expression will take place

S∗
z =

∂M∗
y

∂x
− Qxw

′ = (My + Mzϕ)′ − Qxw′ = Dyw
′′′

+ Dz

(
ϕ2w′′)′ − Qxw

′, N∗ = Mzw
′′ = Dzϕ

(
w′′)2

. (21)

It can be shown that in (21) terms containing the force Qx can be neglected. As a result, the system of
Eqs. (20) with the use of relations (21) is reduced to the system

ρbh
∂2w

∂t2
+

Ebh3

12
w(IV ) +

Eb3h

12
(
ϕ2w′′)′′ = 0,

ρb3h

12
∂2ϕ

∂t2
− Gbh3

3
ϕ′′ +

Eb3h

12
(
w′′)2

ϕ = 0.
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