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Abstract—In the characteristic triangle for a hyperbolic equation of the second kind we study a
nonlocal problem, where the boundary value condition contains a linear combination of Riemann–
Liouville fractional integro-differentiation operators. We establish variation intervals of orders
of fractional integro-differentiation operators, taking into account parameters of the considered
equation with which the mentioned problem has either a unique solution or more than one solution.
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INTRODUCTION

Consider the equation

uxx − (−y)muyy + α(−y)m−1uy = 0, (1)

where 0 < m < 2 and α = const, in the domain Ω bounded by characteristics

AC : x − 2
2 − m

(−y)
2−m

2 = 0, BC : x +
2

2 − m
(−y)

2−m
2 = 1

and the segment I ≡ [0, 1] of the axis y = 0.

Problem. Find a regular in the domain Ω solution u(x, y) to Eq. (1) in the class C
(
Ω

)
∩C1 (Ω ∪ I)

subject to

u(x, 0) = τ(x) ∀x ∈ I, (2)

A(x)Da
0xu [θ0(x)] + B(x)Db

x1u [θ1(x)] = C(x) ∀x ∈ I, (3)

where τ(x), A(x), B(x), and C(x) are given continuous functions such that A2(x) + B2(x) �= 0;
θ0(x) and θ1(x) are points of intersection of characteristics of Eq. (1) originating at the point
(x, 0) ∈ I and characteristics AC and BC, respectively; (Da

0xf) (x) and
(
Db

x1f
)
(x) are Riemann–

Liouville fractional integro-differential operators ([1], pp. 9–10; [2], pp. 42–44).

Problem (1)–(3) is a shift problem [3]. Shift problems for hyperbolic equations were studied by many
authors. See [3–5] for references to papers where one studies the mentioned problems in the case of
a nonlocal condition stated on the characteristic part of the domain boundary. Namely, this condition
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pointwisely connects fractional derivatives of the desired solution of a certain order which ensures the
unique solvability of the problem and depends on the order of degeneration of the equation.

There are only few papers [6–8] devoted to problems for hyperbolic equations, where boundary-value
conditions contain Riemann–Liouville fractional integro-differential operators of an arbitrary order or
generalized integrals and derivatives with a Gaussian hypergeometric function. Moreover, all hyperbolic
equations considered in the mentioned papers are of the first kind.

A specific feature of Eq. (1), which is a hyperbolic equation of the second kind, consists in the fact
that the envelope of its characteristics is the axis y = 0; at the same time, it is the line of parabolic
degeneration and a characteristic of Eq. (1). The behavior of a solution to Eq. (1) near the line of parabolic
degeneration depends on the coefficient at uy and on m. Both the solution and its derivative uy can turn
into infinity on the parabolic line.

Therefore, instead of the classical Cauchy problem, which may be ill-posed, it is natural to study the
modified Cauchy problem

u(x, 0) = τ(x), lim
y→0

(−y)αuy(x, y) = ν(x). (4)

We study problem (1)–(3) in the following cases:
(1) m − 1 < α < m

2 , i.e., −1
2 < β < 0, where β = 2α−m

2(2−m) ;

(2) α = m
2 or, which is the same, β = 0;

(3) m
2 < α < 1 or 0 < β < 1

2 .
In this paper we continue the research described in [6–8].

1. THE UNIQUE SOLVABILITY OF THE PROBLEM

The solution to Eq. (1) subject to (4) with −1
2 < β < 0 takes the form ([5], P. 113)

u(x, y) = k1

∫ 1

0
τ

[
x +

2
2 − m

(−y)
2−m

2 (2t − 1)
]

tβ(1 − t)β dt

+
2k1

(1 + 2β)(2 − m)
(−y)

2−m
2

∫ 1

0
τ ′

[
x +

2
2 − m

(−y)
2−m

2 (2t − 1)
]

tβ(1 − t)β(2t − 1) dt

−
(

2 − m

4

)2β−1

k2(−y)1−α

∫ 1

0
ν

[
x +

2
2 − m

(−y)
2−m

2 (2t − 1)
]

t−β(1 − t)−β dt, (5)

where

k1 =
Γ(2 + 2β)
Γ2(1 + β)

, k2 =
(

2 − m

4

)1−2β Γ(2 − 2β)
Γ(1 − α)Γ2(1 − β)

,

and Γ(z) is the Euler gamma function ([9], pp. 11–13).
Using (5), we get

u [θ0(x)] = k1x
−1−2β

∫ x

0

τ(ξ) dξ

ξ−β(x − ξ)−β

+
k1x

−1−2β

2(1 + 2β)

[∫ x

0

ξ1+βτ ′(ξ) dξ

(x − ξ)−β
−

∫ x

0

τ ′(ξ)(x − ξ)1+β dξ

ξ−β

]
− k2

∫ x

0
ξ−β(x − ξ)−βν(ξ) dξ,

u [θ1(x)] = k1(1 − x)−1−2β

∫ 1

x

τ(ξ) dξ

(1 − ξ)−β(ξ − x)−β

+
k1(1 − x)−1−2β

2(1 + 2β)

[∫ 1

x

τ ′(ξ)(ξ − x)1+β dξ

(1 − ξ)−β
−

∫ 1

x

τ ′(ξ)(1 − ξ)1+β dξ

(ξ − x)−β

]

− k2

∫ 1

x
(1 − ξ)−β(ξ − x)−βν(ξ) dξ.
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Theorem 1. Let a = 1 − β and either b < −β or −β < b ≤ 1 − β. Then if

τ(x) = xτ1(x), τ1(x) ∈ C3
(
I
)
∩ C5 (I) , A(x) �= 0, B(x) = x−β(1 − x)b1(x),

where b1(x) ∈ C
(
I
)
∩ C2 (I) and A(x), C(x) ∈ C

(
I
)
∩ C2 (I), then a solution to problem (1)–(3)

exists and is unique.

Indeed, assuming that u [θ0(x)] and u [θ1(x)] satisfy condition (3), by certain transformations we
obtain the equation

Γ(1 − β)A(x)ν(x) +
∫ 1

x
Ki(x, ξ)ν(ξ) dξ = Fi(x, β), (6)

where i = 1 with b < 0, i = 2 with 0 < b < −β, i = 3 with −β < b < 1 − β;

K1(x, ξ) = − Γ(1 − β)
Γ(1 − b − β)

xβ(1 − ξ)−β(ξ − x)−βb1(x), β < 0;

K2(x, ξ) =
Γ(1 − β)

Γ(1 − b − β)
xβ(1 − ξ)−β(ξ − x)−b−βb1(x), β < 0, b + β < 0;

K3(x, ξ) = − Γ(1 − β)
Γ(1 − b − β)

(1 − x)(1 − ξ)−βb1(x)
(ξ − x)b+β

, β < 0, 0 < b + β < 1;

Fi(x, β) = − 1
k2

xβF (x, β),

F (x, β) = C(x) − k1A(x)
2(1 + 2β)

[
D1−β

0x x−1−2β

∫ x

0

ξ1+βτ ′(ξ) dξ

(x − ξ)−β

− D1−β
0x x−1−2β

∫ x

0

(x − ξ)1+βτ ′(ξ) dξ

ξ−β

]
− k1A(x)D1−β

0x x1−2β

∫ x

0

τ(ξ) dξ

ξ−β(x − ξ)−β

− k1B(x)Db
x1(1 − x)−1−2β

∫ 1

x

τ(ξ) dξ

(1 − ξ)−β(ξ − x)−β

− k1

2(1 + 2β)

[
Db

x1(1 − x)−1−2β

∫ 1

x

τ ′(ξ)(ξ − x)1+β dξ

(1 − ξ)−β

− Db
x1(1 − x)−1−2β

∫ 1

x

τ ′(ξ)(1 − ξ)1+β dξ

(ξ − x)−β

]
.

One can easily see that kernels K1(x, ξ) and K2(x, ξ) are continuously differentiable in the square
0 < x, ξ < 1, and with x = 0 they can become infinite of the order (−β). The kernel K3(x, ξ) is
continuously differentiable with 0 < x, ξ < 1, ξ �= x, and with ξ = x it has a weak singularity of the
order b + β.

Under assumptions of Theorem 1 by a chain of transformations and calculations we conclude that
Fi(x, β) ∈ C (0, 1] ∩ C2 (0, 1), i = 1, 2, 3; moreover, with x = 0 they can become infinite of the order
(−2β), and with x = 1 they are bounded.

Therefore, Eq. (6) is a Volterra equation of the second kind, whose unique solution in the given
function class can be calculated by the method of successive approximations ([10], pp. 14–18).

Remark. In the case when b = 1 − β and, additionally, A(x)x−β + B(x)(1 − x)−β �= 0 one can imme-
diately find the function ν(x) from the correlation

Γ(1 − β)
[
A(x)x−β + B(x)(1 − x)−β

]
ν(x) = − 1

k2
F (x, β).
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2. CASES OF MULTIPLE SOLUTIONS TO THE PROBLEM

Theorem 2. If a = 1 − β k − β < b < k + 1 − β, k = 1, 2, 3, . . . ,

τ(x) = (1 − x)στ1(x), τ1(x) ∈ Ck+3
(
I
)
∩ Ck+5 (I) , σ ≥ b,

ν(x) = (1 − x)b+2β−2ν1(x), ν1(x) ∈ Ck (I) , ν1(1) �= 0,

A(x) = (1 − x)ka1(x), a1(x)B(x) �= 0,

and a1(x), B(x), C(x) ∈ C1
(
I
)
, then problem (1)–(3) has infinitely many linearly independent

solutions.

Proof. Let k = 1, then 1− β < b < 2− β. Under assumptions of Theorem 2, assuming that (5) satisfies
condition (3), we obtain an equation analogous to (6) with respect to ν(x); introducing a new unknown
function

ϕ(x) =
∫ 1

x

(1 − ξ)−βν(ξ) dξ

(ξ − x)b+β−1
(7)

and applying the inversion formula for the Abel integral equation, we turn it to

b1(x)
d

dx
ϕ(x) + x−β(1 − x)1+βa2(x)

d

dx

∫ 1

x

ϕ(t) dt

(t − x)2−b−β
=

F (x, β)
k2

;

here

b1(x) =
Γ(1 − β)

Γ(2 − b − β)
B(x), a2(x) =

Γ(1 − β)
π

sin [π(b + β − 1)]a1(x),

ϕ(1) = ν1(1)B(2 − b − β, b + β − 1) = C∗ = const �= 0,

and B(x, y) is the Beta function ([9], P. 25).
Denote

ψ(x) =
d

dx
ϕ(x). (8)

Then in view of (7) we have

ϕ(x) = C∗ −
∫ 1

x
ψ(t) dt. (9)

Substituting (8) and (9) in (7), with b > 1 − β we get

b1ψ(x) + x−β(1 − x)1+βa2(x)
∫ 1

x

ψ(t) dt

(t − x)2−b−β
− C∗x−β(1 − x)b+β−1a2(x) =

1
k2

F (x, β). (10)

To prove that the problem is not uniquely solvable, it suffices to show that the homogeneous equation
that corresponds to (10) has a nontrivial solution.

Let b1(x) �= 0 and F (x, β) = 0. Then (10) takes the form

ψ(x) +
∫ 1

x

K(x, β)ψ(t) dt

(t − x)2−b−β
= (1 − x)b+β−1x−βγ(x), (11)

where

K(x, β) =
(1 − x)1+βa2(x)

xβb1(x)
, γ(x) =

C∗a2(x)
b1(x)

.

Therefore, with k = 1 and b1(x) �= 0 the homogeneous problem is equivalent in the sense of solvability
to the Volterra equation of the second kind (11).
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Using the method of successive approximations, one can prove that Eq. (11) has a nontrivial solution
in the class of functions ψ(x) = x−β(1 − x)b+β−1ψ1(x), where ψ1(x) ∈ C

(
I
)
∩ C2 (I), so the solution

to the problem is not unique.
With b1(x) �= 0 and F (x, β) �= 0 Eq. (11) takes the form

ψ(x) +
∫ 1

x

K(x, β)ψ(t) dt

(t − x)2−b−β
= F1(x, β), (12)

where

F1(x, β) = x−β(1 − x)b+β−1γ(x) +
F (x, β)
k2b1(x)

.

Therefore, the right-hand side F1(x, β) of Eq. (12) is representable in the form

F1(x, β) = x−β(1 − x)b+β−1F ∗(x, β),

where F ∗(x, β) ∈ C
(
I
)
∩ C2 (I).

In this class of functions Eq. (12) has a nontrivial solution ψ(x). With the help of calculated ψ(x) one
can find ϕ(x) and then do ν(x) and a solution to problem (1)–(3).

Hereinafter we understand a regular solution to Eq. (1) in the domain Ω as a function u(x, y) ∈
C

(
Ω

)
∩ C2 (Ω) satisfying Eq. (1) such that ν(x) = (1 − x)b+2β−2ν1(x), where the function ν1(x) is

sufficiently many times differentiable in some neighborhood (1 − δ, 1) of the point x = 1, and ν1(1) �= 0.
We have proved that Theorem 2 is valid with k = 1. Let us assume that it is also valid with k = n − 1

and prove that the desired assertion is valid with k = n.
With k = n the condition 0 < b − n + β < 1 is fulfilled and the equation takes the form

Γ(1 − β)A(x)x−βν(x) − Γ(1 − β)B(x)
Γ(n + 1 − b − β)

dn

dxn

∫ 1

x

(1 − ξ)−βν(ξ) dξ

(ξ − x)b−n+β
= −Fn(x, β)

k2
.

Hence by introducing a new unknown function

ϕ(x) =
∫ 1

x

(1 − ξ)−βν(ξ) dξ

(ξ − x)b−n+β

we deduce

bn(x)
dn

dxn
ϕ(x) + an(x)x−β(1 − x)1−β

×
[
−(b + β − n)

∫ 1

x

ϕ(t) dt

(t − x)n+1−b−β
+

∫ 1

x

(1 − t)ϕ′(t) dt

(t − x)n+1−b−β

]
=

Fn(x, β)
k2

,

where

bn(x) =
Γ(1 − β)B(x)

Γ(n + 1 − b + β)
, an(x) =

Γ(1 − β)
π

sin [π(b − n + β)]A(x).

Putting dn

dxn ϕ(x) = ψ(x), by certain transformations we obtain

ψ(x) +
∫ 1

x
K∗

n(x, β)ψ(ξ) dξ + γ1(x)(1 − x)b+β−2 =
Fn(x, β)
k2bn(x)

, (13)

where

γ1(x) =
Γ(b + β − n)

Γ(b + β)

[
1

b + β
− (1 − x)(b + β − n)

]
an(x)
bn(x)

x−β(1 − x)−1−β ,

K∗
n(x, β) = x−β(1 − x)−1−β(ξ − x)b+β−2

[
2Γ(b + β − n + 1)

Γ(b + β)
(ξ − x) − Γ(b + β − n)

Γ(b + β − 1)
(1 − x)

]
an(x)
bn(x)

.
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Assumptions of the theorem imply that γ1(x) ∈ C
(
I
)
∩ C2 (I), K∗

n(x, β) ∈ C
(
I × I

)
∩ C2 (I × I).

With Fn(x, β) = 0 the homogeneous problem is reduced to the Volterra equation of the second kind

ψ(x) +
∫ 1

x
K∗

n(x, β)ψ(ξ) dξ = −γ1(x)(1 − x)b+β−2. (14)

Using the method of successive approximations, one can prove that Eq. (14) has a nontrivial solution,
so the problem is not uniquely solvable. In the case, when Fn(x, β) �= 0, Eq. (13) takes the form

ψ(x) +
∫ 1

x
K∗

n(x, β)ψ(ξ) dξ = F ∗
n(x, β), (15)

where

F ∗
n(x, β) =

Fn(x, β)
k2bn(x)

− γ1(x)(1 − x)b+β−2.

The formula

ψ(x) = F ∗
n(x, β) +

∫ 1

x
Rn(x, t, β)F ∗

n (t, β) dt, (16)

where Rn(x, t, β) is a resolvent of the kernel K∗(x, β), defines a solution to Eq. (15) in the class of desired
functions.

Therefore, it is proved that under assumptions of Theorem 2 a solution to problem (1)–(3) exists, but
is not unique, solutions to the problem obey formula (16).

Theorem 3. If a = 1 − β, b = n + 1 − β, n = 1, 2, 3, . . . , A(x) = (1 − x)a2(x), A(x), B(x), C(x) ∈
C1

(
I
)
, τ(x) = (1 − x)στ1(x), τ1(x) ∈ Cn+3

(
I
)
∩ Cn+5 (I), σ ≥ b; a2(x)B(x) �= 0, ν(x) =

(1− x)b+2β−2ν1(x), ν1(x) ∈ Cn (I), and ν1(1) �= 0, then problem (1)–(3) has more than one regular
solution.

Indeed, in this case we obtain the ordinary differential equation

A(x)x−βν(x) − B(x)
dn

dxn

[
(1 − x)−βν(x)

]
=

C(x)
Γ(1 − β)

.

If we put (1 − x)−βν(x) = ν2(x), then

A1(x)ν2(x) − B(x)
dn

dxn
ν2(x) =

C(x)
Γ(1 − β)

, (17)

where A1(x) = x−β(1 − x)βA(x).
Since with x = 1 the function ν(x) turns into zero of the order b + 2β − 2 and is sufficiently many

times differentiable near the point x = 1, while ν1(1) �= 0, we have

ν2(1) = 0, ν ′
2(1) = 0, . . . , ν

(n−1)
2 (1) = (−1)n−1ν1(1)(n − 1)! = Cn−1. (18)

With C(x) = 0 the linear differential equation (17) with initial conditions (18) has a continuous on I
nonzero solution, so problem (1)–(3) is not uniquely solvable.

Let us prove the existence of a solution to the problem with b = n + 1 − β. Let us write (17) in the
form

dn

dxn
ν2(x) − B1(x)ν2(x) = γ2(x), (19)

where B1(x) = A1(x)/B(x) and γ2(x) = −C(x)/ [Γ(1 − β)B(x)].
Denote

dn

dxn
ν2(x) = ψ(x). (20)
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Taking into account initial conditions (18), sequentially integrating (20), we find

ν2(x) =
Cn−1

(n − 1)!
(1 − x)n−1 − 1

(n − 1)!

∫ 1

x
(ξ − x)n−1ψ(ξ) dξ. (21)

Substituting (20) and (21) in (19), we obtain the Volterra equation of the second kind

ψ(x) +
∫ 1

x
K(x, ξ)ψ(ξ) dξ = f(x), (22)

where

f(x) = γ2(x) +
Cn−1

(n − 1)!
(1 − x)n−1B1(x),

K(x, ξ) =
1

(n − 1)!
(ξ − x)n−1B1(x).

One can easily see that K(x, ξ) ∈ C
(
I × I

)
∩ C2 (I × I), f(x) = C

(
I
)
∩ C2 (I), and the formula

ψ(x) = f(x) +
∫ 1

x
R(x, t, b)f (t) dt,

where R(x, t, b) is a resolvent of the kernel K(x, ξ), defines a solution to Eq. (22).
With the help of the known function ψ(x) we can find ν(x) and a solution to problem (1)–(3) which

solves the Cauchy problem (5).
We have also studied cases β = 0 and 0 < β < 1/2 and obtained assertions analogous to Theo-

rems 1–3.
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