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Abstract—We consider an initial-boundary problem with dynamic nonlocal boundary condition
for a pseudohyperbolic fourth-order equation in a cylinder. Dynamic nonlocal boundary condition
represents a relation between values of a required solution, its derivatives with respect to spatial
variables, second-order derivatives with respect to time variable and an integral term. The main
result lies in substantiation of solvability of this problem. We prove the existence and uniqueness of
a generalized solution. The proof is based on the a priori estimates obtained in this paper, Galyorkin’s
procedure and the properties of the Sobolev spaces.
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INTRODUCTION

Mathematicians solve problems with nonlocal conditions for the partial differential equations for
several decades. The problems with nonlocal integral conditions are of particular interest due to their
multifarious applications [1–5] and close relation to the inverse problems [6–8]. Now we have a number
of results on the nonlocal problems with integral conditions solvability for parabolic and hyperbolic
equations. The majority of works on the matter consider the nonlocal problems for the second order
equations (note here the papers [9–18] and references therein). Nevertheless, mathematical models
describing a lot of physical processes interesting for the modern science lead to equations of order
greater than two and to the boundary conditions of more complicated structure than that described
in the classical literature, particularly, to the dynamic boundary conditions. These dynamic boundary
conditions comprising the values of the second order derivatives with respect to the time variable arise
under consideration of the elastically fixed rod oscillations with the loaded spring ends ([19], P. 46;
[20]), or of the nonstationary inner waves in anisotropic or in the rotating stratified fluid [21, 22]. Let
us give an example of the problem statement from [20] whose solvability was proved in [23]: Find in
QT = (0, l) × (0, T ) the solution to equation

Lu ≡ σ(x)utt − (a(x)ux)x − (b(x)uttx)x = F (x, t),

meeting the initial

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)

and the boundary

a(0)ux(0, t) + b(0)uxtt(0, t) − K1u(0, t) − M1utt(0, t) = g1(t),
a(l)ux(l, t) + b(l)uxtt(l, t) + K2u(l, t) + M2utt(l, t) = g2(t)

(1)

conditions.
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A PROBLEM WITH DYNAMIC NONLOCAL CONDITION 39

This problem is a mathematical model of the rod oscillations that takes into account the lateral
displacement effects.

The most important moment in the nonlocal problems consideration is their solvability methods
study, since the existing methods of initial-boundary problems with the classical boundary and initial
conditions are often inapplicable to the nonlocal conditions case [17]. It has been observed in the
development of one of such methods that nonlocal conditions of the first type can be converted in the
case of one spatial variable to nonlocal conditions of the second kind [18]. The transformation procedure
of integral conditions of the first kind

∫ l
0 Ki(x)u(x, t)dx = E(t) into the conditions of the second kind in

the case of the fourth order pseudo-hyperbolic equation

∂2

∂t2
(u − (b(x)ux)x) − (a(x, t)ux)x + c(x, t)u = f(x, t)

generated the dynamic nonlocal conditions containing the integral operator:

a(0)ux(0, t) + b(0)uxtt(0, t) + k11u(0, t) + k12u(l, t) + m11utt(0, t)

+m12utt(l, t) +
∫ l

0
H1u(x, t)dx = g1(t),

a(l)ux(l, t) + b(l)uxtt(l, t) + k21u(l, t) + k22u(l, t) + m21utt(0, t)

+m22utt(l, t) +
∫ l

0
H2u(x, t)dx = g2(t).

(2)

Under certain restrictions on the functions Ki(x) conditions (2) turn into (1).
This consideration allows us to state the problem for the fourth order pseudo-hyperbolic equation

with dynamic nonlocal conditions whose appearance can be justified by the considerations given above.

1. STATEMENT OF THE PROBLEM

Let Ω be a bounded domain in Rn with the smooth boundary ∂Ω, QT = Ω × (0, T ), ST = ∂Ω ×
(0, T ). Consider the equation

Lu ≡ ∂2

∂t2
(u − Δu) − (aij(x, t)uxi)xj + c(x, t)u = f(x, t), (3)

here the redundant indexes stand for the sums from 1 to n, and consider the following problem: Find
in QT the solution to Eq. (3) meeting the initial data

u(x, 0) = 0, ut(x, 0) = 0 (4)

and the nonlocal condition
(

∂2

∂t2
∂u

∂ν
+

∂u

∂N
+ α(t)utt + β(t)u +

∫

Ω
K(x, y, t)u(y, t)dy

)∣
∣
∣
∣
ST

= 0. (5)

Here ν(x) = (ν1, . . . , νn) is the external normal vector to ∂Ω at the given point,

∂u

∂N
= aijuxi cos(ν, xj), aij = aji, ∀(x, t) ∈ QT ,

the functions α(t), β(t), and K(x, y, t) are defined on [0, T ] and Ω × QT , respectively.
Consider the notation

W (QT ) = {u : u ∈ W 1
2 (QT ), ut(x, t) ∈ W 1

2 (QT )},

Ŵ (QT ) = {v(x, t) : v(x, t) ∈ W (QT ), v(x, T ) = 0}.
Let us now introduce the concept of the generalized solution. The standard procedure of [24] (P. 92)
leads to
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40 PUL’KINA
∫ T

0

∫

Ω
(uttv − uxtvxt + uxvx + cuv)dx dt

+
∫ T

0

∫

∂Ω
v(x, t)[αutt + βu +

∫

Ω
K(x, y, t)u(y, t)dy]ds dt =

∫ T

0

∫

Ω
fv dx dt. (6)

Here and in what follows we make use of the following notation:

ux = (ux1, . . . , uxn), u2
x =

n∑

i=1

u2
xi

, u2
xx =

n∑

i=1

u2
xixj

,

uxvx =
n∑

i=1

uxivxi , uxt = (ux1t, . . . , uxnt).

Definition. The generalized solution to problem (3)–(5) is the function u(x, t) ∈ W (QT ) that meets
conditions (4) and equality (6) for any v ∈ Ŵ (QT ).

2. MAIN RESULT

Theorem. If

f ∈ L2(QT ), ft ∈ L2(QT ), c(x, t) ∈ C(QT ), ct ∈ C(QT ),

K(x, y, t) ∈ C(Ω × QT ), α, β ∈ C[0, T ] ∩ C1(0, T ), α(t) ≥ 0, β(t) ≥ 0,

then there exists a unique generalized solution to problem (3)–(5).

Proof. Solution uniqueness. Assume the existence of two different problem solutions, namely
u1(x, t) and u2(x, t). Then their difference u(x, t) = u1(x, t)− u2(x, t) meets the conditions u(x, 0) = 0,
ut(x, 0) = 0 and the equality

∫ T

0

∫

Ω
(uttv − uxtvxt + uxvx)dx dt +

∫ T

0

∫

Ω
cuv dx dt

+
∫ T

0

∫

∂Ω
v(x, t)[αutt + βu +

∫

Ω
K(x, y, t)u(y, t)dy]ds dt = 0. (7)

Choose now a function

v(x, t) =

⎧
⎪⎨

⎪⎩

t∫

τ
u(x, η)dη, 0 ≤ t ≤ τ ;

0, τ ≤ t ≤ T,

in (7) and integrate the first summand of (7) by parts. The result is the equality
∫

Ω
[v2

t (x, τ) + aij(x, 0)vxi(x, 0)vxj (x, 0) + v2
xt(x, τ)]dx

+ α(t)
∫

∂Ω
v2
t (x, τ)ds + β(τ)

∫

∂Ω
v2(x, 0)ds

= 2
∫ τ

0

∫

Ω
c(x, t)v(x, t)vt(x, t)dx dt −

∫ τ

0

∫

Ω

∂aij

∂t
vxivxj + 2

∫ τ

0

∫

∂Ω
v

∫

Ω
Kvt dy ds dt. (8)

Let us now estimate the left-hand side of equality (8) applying the Cauchy and Cauchy–Bunyakovsky
inequalities together with assumptins of the theorem:

2
∣
∣
∣
∣

∫ τ

0

∫

Ω
cvvt dx dt

∣
∣
∣
∣ ≤ c0

∫ τ

0

∫

Ω
(v2 + v2

t )dx dt;
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∣
∣
∣
∣

∫ τ

0

∫

Ω

∂aij

∂t
vxivxjdx dt

∣
∣
∣
∣ ≤ 2a1

∫ τ

0

∫

Ω
v2
xdx dt;

2
∣
∣
∣
∣

∫ τ

0

∫

∂Ω
v

∫

Ω
Kvt dy ds dt

∣
∣
∣
∣ ≤

∫ τ

0

∫

∂Ω
v2ds dt +

∫ τ

0

∫

∂Ω

(∫

Ω
Kvtdy

)2

ds dt.

We assume next the notation

k = max
QT

∫

Ω
K2(x, y, t)dy, ω =

∫

∂Ω
ds,

keep in mind the equality
∫

∂Ω
v2ds ≤ c1

∫

Ω
(v2

x + v2)dx,

([24], P. 77) and derive from the latter inequality the relation

2
∣
∣
∣
∣

∫ τ

0

∫

∂Ω
v

∫

Ω
Kvt dy ds dt

∣
∣
∣
∣ ≤

∫ τ

0

∫

Ω
(c1v

2 + c1v
2
x + kωv2

t )dx dt.

Noting that the representation of the function v(x, t) implies that

vt = u, v2 =
(∫ t

τ
u(x, η)dη

)2

≤ τ

∫ τ

0
u2dt,

we arrive at the inequality
∫

Ω
[u2(x, τ) + u2

x(x, τ) + aij(x, 0)vxi(x, 0)vxj (x, 0)]dx

+ α(τ)
∫

∂Ω
v2
t (x, τ)ds + β(τ)

∫

∂Ω
v2(x, 0)ds ≤ c2

∫ τ

0

∫

Ω
(u2 + v2

x)dx dt,

here c2 = max{(c0 + c1)T + (c0 + kω), 2a1 + c1}.

In particular,
∫

Ω
[u2(x, τ) + aij(x, 0)vxi(x, 0)vxj (x, 0)]dx ≤ c2

∫ τ

0

∫

Ω
(u2 + v2

x)dx dt. (9)

Put here Wi(x, t) =
t∫

0

uxidη and arrive (by [24], P. 211) at the relation

vxi(x, t) = Wi(x, t) − Wi(x, τ), vxi(x, 0) = −Wi(x, τ).

Then (9) turns into
∫

Ω
[u2(x, τ) + aij(x, 0)Wi(x, τ)Wj(x, τ)]dx

≤ c2

∫ τ

0

∫

Ω

(

u2 + 2
n∑

i=1

W 2
i

)

dx dt + 2c2τ

∫

Ω

n∑

i=1

W 2
i (x, τ)dx. (10)

Note now that by assumption aijWiWj ≥ γ
n∑

i=1
W 2

i ; so, because τ is arbitrary, we choose it so that

the condition γ − 2c2τ > 0 holds. It holds, for instance, in the case of τ ∈ [0, γ
4c2

], for which (10) yields

∫

Ω

(

u2(x, τ) +
n∑

i=1

W 2
i (x, τ)

)

dx ≤ c3

∫ τ

0

∫

Ω

(

u2 +
n∑

i=1

W 2
i

)

dx dt,
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here c3 = 2c2
m0

, m0 = min{1, γ
2}. The resulting inequality together with the Gronwall lemma allow us

to state that we have u(x, τ) = 0 for the chosen τ . We repeat the considerations for τ ∈
[ γ

4c2
, γ

2c2

]
, and

continue the process that results in u(x, t) = 0 for all t ∈ [0, T ].

Existence of the solution. Let the functions wk(x) ∈ C3[0, l] comprise the complete and linearly
independent in W 1

2 (0, l) system. We search for the approximate solution in the form of

um(x, t) =
m∑

k=1

ck(t)wk(x)

from the relations
∫

Ω
(um

tt wl + um
xittwlxi

+ aiju
m
xi

wlxj
+ cumwj)dx

∫

∂Ω
wl(x)[αum

tt + βum +
∫

Ω
Kumdy]ds =

∫

Ω
fwldx. (11)

We complete relations (11) that constitute the ordinary differential equation system on ck(t) with the
initial conditions ck(0) = 0, c′k(0) = 0, and arrive at the Cauchy problem with initial data (13) on ordinary
differential equation system (11) that can be rewritten as follows:

m∑

k=1

c′′(t)Akj +
m∑

k=1

ck(t)Bkj(t) = fj(t), (12)

ck(0) = 0, c′k(0) = 0, (13)

Akl(t) = (wk, wl)W 1
2 (Ω) + α(t)(wk, wl)L2(∂Ω),

Bkl(t) =
∫

Ω
[aij∇wk∇wl + cwkwl]dx + β(t)(wk, wl)L2(∂Ω) +

∫

∂Ω
wl

∫

Ω
Kwk dy ds,

fl(t) =
∫

Ω
f(x, t)wl(x)dx.

It seems clear that system (12) is solvable with respect to the senior derivatives. Indeed, consider the

quadric q =
m∑

k,l=1

Aklξkξl, here ξi are components of the vector ξ =
m∑

i=1
ξiwi(x). We put into this quadric

the expressions for coefficients Akl and obtain

q =
∫

Ω
(|ξ|2 + |∇ξ|2)dx + α(t)

∫

∂Ω
|ξ|2ds ≥ 0.

Since q = 0 only if ξ = 0, therefore due to linear independence of wk(x) all ξi = 0. Thus, the quadric
q and, consequently, the matrix with the senior derivatives is positive. So system (12) is resolvable
with respect to the senior derivatives. By assertion, coefficients of the system are bounded and the free
summands fl ∈ L1(0, T ). Hence, there exists a solution to the Cauchy problem (12)—(13), moreover,
c′′k ∈ L1(0, T ). Thus we have a sequence of approximate solutions.

Further on in order to prove the existence of generalized solution we need a certain a priori estimate.
We multiply each of equalities (11) by c′l(t), sum them over l from 1 to m, and then integrate the result

from 0 to τ . Finally, we obtain
∫ τ

0

∫

Ω
(um

tt u
m
t + aiju

m
xi

um
xit + um

xittu
m
xit + cumum

t )dx dt

+
∫ τ

0

∫

∂Ω
um

t

∫

Ω
Kum dy ds dt +

∫ τ

0

∫

∂Ω
um

t [αum
tt + βum]ds dt =

∫ τ

0

∫

Ω
f(x, t)um

t (x, t)dx dt. (14)
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Integration by part allows us to transform (14) into
∫

Ω
[(um

t (x, τ))2 + aiju
m
xi

(x, τ))um
xj

(x, τ) + (um
xt(x, τ))2]dx

+
∫

∂Ω
[α(um

t (x, τ))2 + β(um(x, τ))2] = 2
∫ τ

0

∫

Ω
fum

t dx dt

− 2
∫ τ

0

∫

Ω
cumum

t dx dt +
∫

τ

∫

Ω

∂aij

∂t
um

xi
um

xj
dx dt − 2

∫ τ

0

∫

∂Ω
um

t

∫

Ω
Kum dy ds dt.

The estimate of right-hand side of the latter equality leads to the first a priori estimate

‖um‖2
W 1

2 (QT ) + ‖um
xt‖2

L2(QT ) + ‖um
t ‖2

L2(ST ) + ‖um‖2
L2(ST ) ≤ P1. (15)

In order to find the second a priori estimate we differentiate relation (11) with respect to t, multiply
the result by c′′l (t), sum it over l from 1 to m and integrate from 0 to τ . Thus, we arrive at the equation

∫ τ

0

∫

Ω
(um

tttu
m
tt + aiju

m
txi

um
ttxj

+ um
tttxi

um
ttxi

+ cum
t um

tt + ctu
mum

tt + aijtu
m
xi

um
ttxj

)dx dt

+
∫ τ

0

∫

∂Ω
um

tt

∫

Ω
(Kum

t + Ktu
m)dy ds dt

+
∫ τ

0

∫

∂Ω
[αt(um

tt )
2 + βtu

m
tt u

m]ds dt +
∫ τ

0

∫

∂Ω
um

tt (αum
ttt + βum

t )ds dt =
∫ τ

0

∫

Ω
ftu

m
tt dx dt.

We now integrate by parts the first three summands of the left-hand side and transform this identity into
∫

Ω
[(um

tt )
2 + (um

xtt)
2]

∣
∣
∣
∣
t=τ

dx +
∫

∂Ω
[α(um

tt )
2 + β(um

t )2]
∣
∣
∣
∣
t=τ

ds

=
∫

Ω
[(um

tt )
2 + (um

xtt)
2]

∣
∣
∣
∣
t=0

dx +
∫

∂Ω
α(um

tt (x, 0))2ds + 2
∫ τ

0

∫

Ω

∂aij

∂t
um

xitu
m
xjtdx dt

−
∫ τ

0

∫

Ω

∂aij

∂t
um

xi
um

xjttdx dt − 2
∫ τ

0

∫

Ω
(cu)tuttdx dt +

∫ τ

0

∫

∂Ω
[αt(um

tt )
2 + βt(um

t )2]ds dt

− 2
∫ τ

0

∫

∂Ω
um

tt

∫

Ω
(Ku)t dy ds dt + 2

∫ τ

0

∫

Ω
ftu

m
tt dx dt. (16)

Consider the summands
∫

Ω

(um
ttx(x, 0))2dx,

∫

∂Ω

(um
tt (x, 0))2dx that are somewhat difficult to estimate

because we know nothing of their behavior for t = 0. In (11) put t = 0, multiply it by c′′l (0) and sum the
resulting equalities over l from 1 to m. Since cl(0) = c′l(0) = 0, we have also um(x, 0) = 0, um

xi
(x, 0) = 0.

Under these circumstances we have the identity
∫

Ω
[(um

tt (x, 0))2 + (um
ttxi

(x, 0))2]dx + α(0)
∫

∂Ω
(um

tt (x, 0))2ds =
∫

Ω
ft(x, 0)um

tt (x, 0)dx.

By the Cauchy inequality
∣
∣
∣
∣

∫

Ω
ftu

m
t dx

∣
∣
∣
∣ ≤

1
2

∫

Ω
f2

t (x, 0)dx +
1
2

∫

Ω
(um

tt (x, 0))2dx

we have
∫

Ω
[(um

tt (x, 0))2 + (um
ttxi

(x, 0))2]dx + α(0)
∫

∂Ω
(um

tt (x, 0))2ds ≤
∫

Ω
(ft(x, 0))2dx,

this expression allows us to infer from (16) the second a priori estimate by elementary inequalities and
assumptions of the theorem:

‖um
tt ‖2

L2(QT ) + ‖um
xtt‖2

L2(QT ) + ‖um
tt ‖2

L2(ST ) ≤ P2. (17)
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Estimates (15) and (17) give us the a priori estimate in the space W (QT )

‖um‖W (QT ) ≤ P, (18)

that allows us to make the next step in the proof of the theorem. Note that the constant P in (18) does not
depend on m. Hence, the constructed sequance of approximate solutions {um(x, t)} contains a weakly
convergent in W (QT ) subsequence for which for the sake of brevity we conserve the same notation.

Let us show now that the limit of this subsequence u ∈ W (QT ) is exactly the desired approximate
solution.

We multiply each equality of (11) by dl ∈ W 1
2 (0, T ), dl(T ) = 0, sum over l from 1 to m, and then

integrate the result from 0 to T . After we integrate the second summand of the left-hand side of the

identity we denote
m∑

l=1

dl(t)wl(x) by η(x, t) and obtain

∫ T

0

∫

Ω
(um

tt η − um
xtηxt + aiju

m
xi

ηxj + cumη)dx dt +
∫ T

0

∫

∂Ω
η(x, t)

∫

Ω
Kum dy ds dt

+
∫ T

0

∫

∂Ω
η(x, t)[αum

tt + βum]ds dt =
∫ T

0

∫

Ω
fη dx dt.

Estimates (15) and (17) ensure the possibility of passing to the limit for m → ∞ for the fixed η(x, t).

This gives us relation (6) for any η(x, t) =
m∑

l=1

dl(t)wl(x). Since the set of such functions is dense in

W 1
2 (QT ), identity (6) holds for any function of Ŵ 1

2 (QT ). This ensures the generalized solution existence
and completes the proof of the theorem. �
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