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Abstract—We develop an approach to constructing and classification of semifield projective planes
with the use of a linear space and a spread set. We construct a matrix representation of the spread
set of a semifield plane of odd order that admits a Baer involution in the translation complement or
a subgroup of autotopisms isomorphic to the alternating group A4. We give examples of semifield
planes of order 81 satisfying the above indicated condition.
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INTRODUCTION

There is a method of constructing semifield planes, as well as other translation planes, based on a
vector space of even dimension and a spread set, i.e., a family of linear transformations which gives
a consistent splitting. A matrix representation of the spread set determines geometric properties of
the plane and algebraic properties of the coordinatizating semifield. Of interest are the problem of
investigation of the group of automorphisms (collineations) for a known representation of the spread set
and the inverse problem of constructing a projective plane with definite properties of the automorphism
group. In particular, in 90’s, a series of papers were published ([1–4] et al.) devoted to the construction
and investigation of rank two semifield planes admitting a Baer involution. In the construction, a four-
dimensional vector space and a spread set represented by (2 × 2)-matrices over a field of order pn were
used. In this case, the functions defining the spread set of a plane are polynomials of degree ≤ pn−1.

In the paper, we obtain matrix representations of the spread sets of a semifield plane of an arbitrary
odd order pN admitting a Baer collineation of order two and of a semifield plane admitting a group of
autotopisms isomorphic to the alternating group A4. The plane is presented with the use of a linear
space over a field of prime order which allows ones to pass to linear functions and simplify significantly
all reasonings and calculations.

In what follows we will consider the matrices of spread sets

θ(V,U) =

⎛
⎝m(U) f(V )

V U

⎞
⎠ , (1)

θ(V1, U1, V2, U2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ(J−1U2J) ν(J−1V2) ψ(J−1U1) ϕ(J−1V1)J−1

ψ(JV2) μ(JU2J
−1) ν(JV1) ϕ(JU1)J−1

ν(U1) ψ(V1) μ(U2) ϕ(V2)

V1 U1 V2 U2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)
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8 KRAVTSOVA

The elements of the matrices here and elsewhere are square blocks of equal order, E is the identity matrix.
To write down involutions in a group of autotopisms we use the notation

τ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−E 0 0 0

0 E 0 0

0 0 −E 0

0 0 0 E

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

L 0 0 0

0 L 0 0

0 0 L 0

0 0 0 L

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4)

where L =

⎛
⎝−E 0

0 E

⎞
⎠, the order of blocks will be indicated in the text.

The main results are as follows.

Theorem 1. Let π be a semifield plane of order pN , p > 2 be a prime number, which admits a Baer
involution τ in the translation complement. Then N = 2n and π can be given by a 4n-dimensional
vector space over Zp so that τ is defined by (4n × 4n)-matrix (3). The plane π has spread set
R ⊂ GL2n(p) ∪ {0} formed by matrices of the form (1), where {U} = K and {V } = Q are s-spread
sets in GLn(p)∪ {0}, K is the spread set of the Baer subplane π0 fixed by the involution τ , m and f
are injective linear mappings from K and Q, respectively, to GLn(p) ∪ {0} such that m(E) = E,
f(E) �= E.

Theorem 2. Let π be a semifield plane of odd order pN , p be a prime number, whose group of
autotopisms contains a subgroup H � A4. Then N = 4n and π can be given by an 8n-dimensional
vector space over Zp so that the spread set R ⊂ GL4n(p) ∪ {0} is formed by (4n × 4n)-matrices of
the form (2), where J3 = E; {V1} = Q1, {U1} = K1, {V2} = Q2, {U2} = K2 are s-spread sets in
GLn(p) ∪ {0}; J−1K2J = K2, JK1 = Q2, JQ1 = K1, JQ2 = Q1; ν, ψ, μ, and ϕ are injective linear
mappings from K1, Q1, K2, and Q2, respectively, to GLn(p) ∪ {0} such that

μ(E) = E, ν(E) = E, ϕ(E) �= E, ψ(E) �= E.

To illustrate the obtained results, we construct semifield planes of order 81. The results were
announced partially in [5, 6].

1. BASIC DEFINITIONS AND NOTATION
Below we give some basic definitions and notation according to [7, 8].
For points and lines of a finite projective plane, a coordinate system can be introduced with the use

of elements of some coordinatizating set. The properties of the incidence relation in a projective plane
allow one to introduce on the coordinatizating set operations of multiplication and addition. Algebraic
properties of the coordinatizating set are closely related to geometric properties of the corresponding
projective plane. In particular, a classical or Desargues projective plane is coordinatized by a field, and
a translation plane is coordinatized by a quasifield. The coordinatizating set of a semifield plane is a
division ring, or a semifield.

Let π be a translation plane of order qn (q = pk, p is a prime number), and let W be an n-dimensional
linear space over the field GF (q). Then affine points of π can be represented ([7], P. 160) by vectors
(x, y), x, y ∈ W , and affine lines by cosets of the subgroups

Vi = {(x, xθi) | x ∈ W}, i = 1, 2, . . . , qn, V0 = {(0, y) | y ∈ W}.
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SEMIFIELD PLANES OF ODD ORDER 9

Here θi are (n × n)-matrices with elements from GF (q) which form the spread set R of π ([8]).

Definition 1. The set R consisting of qn n × n-matrices over GF (q), R = {θi | i = 1, 2, . . . , qn}, is
called a spread set if the following conditions hold:

1) R contains the zero and the identity matrices,
2) det(θi − θj) �= 0 for all i �= j.

Thus, we can write down R = {θ(w) | w ∈ W}, where θ : W → GL(W ) ∪ {0} and θ(0) = 0.
Let ∗ be the operation on W defined by x ∗ y = x · θ(y), x, y ∈ W . Then 〈W,+, ∗〉 is a quasifield.

Definition 2. A spread set R ⊂ GL(W )∪ {0} is called an s-spread set if it is closed with respect to the
addition.

It was proved in [8] that if R is an s-spread set, then 〈W,+, ∗〉 is a semifield.

Definition 3. The following subsets

Wr = {x ∈ W |(ab)x = a(bx) ∀a, b ∈ W},
Wm = {x ∈ W |(ax)b = a(xb) ∀a, b ∈ W},
Wl = {x ∈ W |(xa)b = x(ab) ∀a, b ∈ W}

are called, respectively, the right, the middle, and the left nuclei of a semifield W .
These sets are subfields in W , and it is known that a semifield plane can be considered as a linear

space over any of the nuclei of the semifield ([7], P. 169). As a rule, it is convenient to use the left
nucleus Wl.

Let [∞] be a translation line of a plane π and (∞) its translation point. The subgroup Λ formed by
collineations that fix the triangle with vertices P1, P2 = (∞), P3 ∈ [∞] and sides l1, l2 = [∞], l3 � (∞)
is called the autotopism group. By virtue of the ((∞), (∞))-transitivity and the ([∞], [∞])-transitivity
of a semifield plane, one can assume without loss of generality that P1 = (0, 0), P3 = (0), l1 = [0, 0],
l3 = [0] (for notation, see [7]).

There is the conjecture ([7], P. 178) on solvability of the full group of collineations for any semifield
non-Desargues plane of finite order (see also [9], Question 11.76). By now, this conjecture has been
proved only for some classes of semifield planes ([2, 4, 10] et al.). As was proved in ([7], P. 174), the
conjecture on solvability of the full group of automorphisms for a non-Desargues semifield plane is
reduced to solvability of the autotopism group. Further, if the autotopism group Λ has odd order, it is
solvable by the Feit–Thompson theorem. Therefore, discussing the question on solvability, one should
consider only semifield planes admitting autotopisms of order two.

According to a classical result on projective planes ([7], P. 91), a collineation of order two is either a
perspectivity (a central collineation) or a Baer collineation.

Definition 4. A collineation of a projective plane is called central if it fixes pointwise a line (the axis), a
point (the center) and all lines passing through the center (not pointwise). If the center is incident to the
axis, the collineation is called an elation, otherwise it is called a homology.

Definition 5. A collineation of a projective plane of order m is called a Baer collineation if it fixes
pointwise a maximal subplane of order

√
m (the Baer subplane).

It was proved [4] that central collineations form in the autotopism group the following cyclic
subgroups:

1) Hr � W ∗
r , the group of homologies with axis [0, 0] and center (∞),

2) Hl � W ∗
l , the group of homologies with axis [∞] and center (0, 0),

3) Hm � W ∗
m, the group of homologies with axis [0] and center (0).

The matrices that form the indicated subgroups of homologies are as follows:

Hr =

⎧⎨
⎩

⎛
⎝E 0

0 A

⎞
⎠

⎫⎬
⎭ , Hm =

⎧⎨
⎩

⎛
⎝B 0

0 E

⎞
⎠

⎫⎬
⎭ , Hr =

⎧⎨
⎩

⎛
⎝C 0

0 C

⎞
⎠

⎫⎬
⎭ .

The matrices A, B, and C form in GL(W ) multiplicative subgroups isomorphic to W ∗
r , W ∗

m, and W ∗
l ,

respectively.
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10 KRAVTSOVA

Lemma 1 ([7], P. 181). Let D be a finite semifield. If the plane P (D) has even order and contains
no Baer subplanes or has odd order and the dimension of D over at least one of the nuclei is odd,
then the autotopism group of D is solvable.

Thus, studying the question on solvability of the full group of collineations of a non-Desargues
semifield plane of even order, we may consider only planes whose autotopism group contains a Baer
involution.

2. BAER INVOLUTION IN THE TRANSLATION COMPLEMENT

The structure of the spread set of a semifield plane of even order 2N admitting a Baer involution in
the translation complement was established in [11]. The set of affine points of a semifield plane was
considered as a linear space over the field of order two, this made it possible to write down a Baer
involution as a linear transformation and use only linear functions in the writing of matrices of the spread
set. We will use the same approach in the study of semifield planes of odd order.

Proof of Theorem 1. Let π be a semifield plane of order pN , p > 2 be a prime number, admitting a
Baer involution τ in the translation complement. Since τ fixes pointwise a subplane π0 of maximal order
|π0| =

√
|π|, therefore N = 2n is an even number.

Consider the set of affine points of π as a 4n-dimensional linear space over the field Zp:

W × W = {(x1, x2, . . . , x2n, y1, y2, . . . , y2n)|xi, yi ∈ Zp},
W = {(x1, x2, . . . , x2n)|xi ∈ Zp}.

Then τ is a linear transformation of the space W ×W which fixes exactly 2n one-dimensional subspaces
of W × W . Thus, the Jordan normal form of the matrix of τ is formed by 2n Jordan cells of the form(−1 0

0 1

)
. Obviously, one can choose a basis in W × W with respect to which the Baer involution τ is

given by (3).
The matrix of the spread set of a semifield plane π is uniquely determined by any its row, for example,

the last one. The other elements of the matrix are additive functions of the elements of this row. Since
Zp has prime order, these functions are linear:

θ(u2n,1, . . . , u2n,2n) =

⎛
⎜⎜⎜⎜⎜⎜⎝

u11 . . . u1,2n

u21 . . . u2,2n

. . . . . . . . . . . . .

u2n,1 . . . u2n,2n

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where uij = qij1u2n,1 + qij2u2n,2 + · · · + qij,2nu2n,2n for i = 1, 2, . . . , 2n − 1, j = 1, 2, . . . , 2n.
Let us rewrite the matrix in the form

θ(V,U) =

⎛
⎝m(U) + h(V ) d(U) + f(V )

V + s(U) U + w(V )

⎞
⎠ ,

subdividing it into blocks of order n. The summands V , h(V ), f(V ), and w(V ) contain linear
functions depending only on u2n,1, . . . , u2n,n. The other summands are defined by the choice of elements
u2n,2n+1, . . . , u2n,2n. Then, obviously, the last rows of the matrices s(U) and w(V ) consist only of zeros.

Let us find out the conditions on the indicated functions under which a plane with spread set R admits
a Baer involution τ of the form (3). For brevity, we denote T =

(−E 0
0 E

)
, then τ =

(
T 0
0 T

)
.

Since τ is a collineation, for any matrix θ(V,U) ∈ R, the product T−1θ(V,U)T also belongs to R
([12, 13]). We have

T−1θ(V,U)T =

⎛
⎝m(U) + h(V ) −d(U) − f(V )

−V − s(U) U + w(V )

⎞
⎠ = θ(−V,U).
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SEMIFIELD PLANES OF ODD ORDER 11

Hence s(U) ≡ 0, d(U) ≡ 0, h(V ) ≡ 0, and w(V ) ≡ 0,

θ(V,U) =

⎛
⎝m(U) f(V )

V U

⎞
⎠ .

Since R is the spread set of a semifield plane, it follows from definition that the sets Q = {V } and
K = {U} are closed with respect to the addition and contain the zero matrix, all nonzero matrices are
nondegenerate.

In addition, it is obvious that E ∈ K, m(E) = E. What is more, we can assume that the set Q also
contains the identity matrix. In fact, let V0 ∈ K, V0 �= 0. Let us choose a new basis in W taking the
transition matrix A =

(
V0 0
0 E

)
. Then

Aθ(V0, 0)A−1 =

⎛
⎝V0 0

0 E

⎞
⎠

⎛
⎝ 0 f(V0)

V0 0

⎞
⎠

⎛
⎝V −1

0 0

0 E

⎞
⎠ =

⎛
⎝0 V0f(V0)

E 0

⎞
⎠ ,

and, in addition, ATA−1 = T and Aθ(0, E)A−1 = θ(0, E).
The conditions that m(U) ∈ GLn(p) for all 0 �= U ∈ K and f(V ) ∈ GLn(p) for all 0 �= V ∈ Q follow

from the fact that the matrix θ(V,U) �= 0 is nondegenerate because

det θ(0, U) = detm(U) · det U and det θ(V, 0) = det f(V ) · det V.

Examining the set of all affine points of π of the form

(0, x, 0, y) for x = (xn+1, . . . , x2n), y = (yn+1, . . . , y2n), xi, yi ∈ Zp,

we see that (0, x, 0, y)τ = (0, x, 0, y). Therefore, such points form a Baer subplane π0 fixed by the
involution τ . Since (0, x)θ(0, U) = (0, xU), it follows that K = {U} is the spread set of π0. �

Lemma 2. Let the sets Q and K in the assumptions of Theorem 1 be fields of order pn in
GLn(p) ∪ {0}. Then one can assume without loss of generality that Q = K.

Proof. Let a matrix D be a generating element of the multiplicative group K∗. Since the fields Q and
K are conjugate in GLn(p), there exists a matrix P ∈ GLn(p) such that C = PDP−1 is a generating
element of the multiplicative group Q∗. Consider the following matrices of the spread set

θ(C, 0) =

⎛
⎝0 f(C)

C 0

⎞
⎠ , θ(0,D) =

⎛
⎝m(D) 0

0 D

⎞
⎠

and change the basis in W using the transition matrix

M =

⎛
⎝D−1PDP−1 0

0 E

⎞
⎠ ,

which does not change the form of the Baer involution τ . Then

Mθ(0,D)M−1 =

⎛
⎝D−1PDP−1m(D)PD−1P−1D 0

0 D

⎞
⎠ =

⎛
⎝m(D) 0

0 D

⎞
⎠ ,

Mθ(C, 0)M−1 =

⎛
⎝0 D−1PDP−1f(C)

C 0

⎞
⎠ =

⎛
⎝ 0 f(D)

D 0

⎞
⎠ ,

where m, f are new linear functions defining the spread set (in terms of the other basis). Thus, up to an
isomorphism of planes, we can assume that Q∗ = 〈D〉 and Q = K.

RUSSIAN MATHEMATICS (IZ. VUZ) Vol. 60 No. 9 2016



12 KRAVTSOVA

Remark. It is obvious that the s-spread set K is defined up to an isomorphism of the corresponding
subplane π0. To prove this fact, it suffices to consider a change of basis of the 4n-dimensional linear
space with block-diagonal transition matrix.

3. AUTOTOPISM GROUP ISOMORPHIC TO A4

The question on existence of a subgroup in the translation complement of a semifield plane isomor-
phic to A4 was considered on repeated occasions on the scientific seminar at the Krasnoyarsk university
(run by N. D. Podufalov). In particular, a significant progress in the study of odd order planes admitting a
large group of Baer collineations has been achieved by I. V. Busarkina [14], who proved that such planes
do not admit A4.

It should be noted that one can easily give a large number of examples of semifield planes of even order
admitting A4 (see the result of the author in [15]). Thus, of special interest are planes of odd order. The
absence of a subgroup isomorphic to A4 in the autotopism group and, generally, in the linear translation
complement was proved in [16] for the case of a semifield plane of rank two over a finite field of odd order.

Let us find out under what conditions on the spread set, in the notation of the preceding Section, a
semifield plane of odd order admits a subgroup of autotopisms isomorphic to the alternating group A4.
Let H < Λ, H = 〈τ, σ〉 � 〈γ〉, where σ, γ ∈ Λ, |σ| = 2, |γ| = 3, στ = τσ, τγ = σ.

Since σ is an involution in Λ, it follows that σ is either a homology or a Baer involution. Since τ and σ
are conjugate, σ cannot be a homology.

Let π0 = F(τ) be the Baer subplane fixed by τ . Then the Baer involution σ, permutable with τ ,
induces a collineation σ0 on the plane π0 which can also be either a homology of the plane π0 or a Baer
involution. Consider all possible cases.

1. Let σ0 be a homology with axis [∞]0 and center (0, 0)0 (the lower index 0 means that a point or a
plane belongs to the subplane π0). Then σ0 is given by the 2n × 2n-matrix

σ0 =

⎛
⎝−E 0

0 −E

⎞
⎠ .

We have

σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 A2 0 0

0 −E 0 0

0 0 B1 B2

0 0 0 −E

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since τσ = στ , it follows that A2 = B2 = 0, A2
1 = E, B2

1 = E, A1 �= −E, B1 �= −E (since σ is not a
homology).

Let γ ∈ Λ be an element of order three such that τγ = σ, σγ = τσ, (τσ)γ = τ , γ =
(

S 0
0 Z

)
. Then

S−1TS = A, S−1AS = TA, where

S =

⎛
⎝S1 S2

S3 S4

⎞
⎠ , A =

⎛
⎝A1 0

0 −E

⎞
⎠

(the equalities for the matrices Z and B are similar). In more detail, we have:⎛
⎝−E 0

0 E

⎞
⎠

⎛
⎝S1 S2

S3 S4

⎞
⎠ =

⎛
⎝S1 S2

S3 S4

⎞
⎠

⎛
⎝A1 0

0 −E

⎞
⎠ ,

⎛
⎝A1 0

0 −E

⎞
⎠

⎛
⎝S1 S2

S3 S4

⎞
⎠ =

⎛
⎝S1 S2

S3 S4

⎞
⎠

⎛
⎝−A1 0

0 −E

⎞
⎠ ,

RUSSIAN MATHEMATICS (IZ. VUZ) Vol. 60 No. 9 2016



SEMIFIELD PLANES OF ODD ORDER 13

hence

S4 = 0, S1 + S1A1 = 0, S3 − S3A1 = 0, A1S1 + S1A1 = 0, S2 + A1S2 = 0.

Since S4 = 0, we have |S2| �= 0 and A1 = −E, |S3| �= 0 and A1 = E. The contradiction obtained shows
that σ0 is not a homology of π0 with the axis [∞]0 and the center (0, 0)0.

2. Let σ0 be a homology with the center (∞)0 and the axis [0, 0]0. Then

σ0 =

⎛
⎝E 0

0 −E

⎞
⎠ , σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 0 0 0

0 E 0 0

0 0 B1 0

0 0 0 −E

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For

Z =

⎛
⎝Z1 Z2

Z3 Z4

⎞
⎠ , B =

⎛
⎝B1 0

0 −E

⎞
⎠ ,

a reasoning similar to that in the preceding case implies B1 = E and B1 = −E, a contradiction.

3. If σ0 is a homology with the center (0)0 and the axis [0]0, then

σ0 =

⎛
⎝−E 0

0 −E

⎞
⎠ , σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 0 0 0

0 −E 0 0

0 0 B1 0

0 0 0 E

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which also leads to a contradiction.

Lemma 3. Let H < Λ, H = 〈τ, σ〉 � 〈γ〉, where σ, γ ∈ Λ, |σ| = 2, |γ| = 3, στ = τσ, τγ = σ. Then the
order of π equals p4n, and, without loss of generality, we can represent the autotopisms τ and σ
by 8n × 8n-matrices of the form (3) and (4), respectively,

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 E 0 0 0 0 0

E 0 0 0 0 0 0 0

0 E 0 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 0 0 E 0

0 0 0 0 E 0 0 0

0 0 0 0 0 E 0 0

0 0 0 0 0 0 0 J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where I3 = J3 = E.
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14 KRAVTSOVA

Proof. As was shown above, σ is a Baer involution of π. From the condition τσ = στ , we have

σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 0 0 0

0 A2 0 0

0 0 B1 0

0 0 0 B2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and the restriction of σ to the subplane π0 = F (τ), σ0 =
(

A2 0
0 B2

)
, is a Baer involution of π0. Conse-

quently, the number
√

|π0| is an integer, i.e., |π| = p4n. We consider then the linear space W = W0 ×W0

and apply Theorem 1 to σ0. As a result, we obtain the following (4n × 4n)-matrix:

σ0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−E 0 0 0

0 E 0 0

0 0 −E 0

0 0 0 −E

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Taking into account that the matrices A2 and B2 in the expression of σ are reduced to the form(−E 0
0 E

)
, we can, passing to a new basis, bring the cells A1 and B1 to the same form and write down σ

in the form (4).

Let

γ =

⎛
⎝S 0

0 Z

⎞
⎠ , S =

⎛
⎝S1 S2

S3 S4

⎞
⎠ , Z =

⎛
⎝Z1 Z2

Z3 Z4

⎞
⎠ .

Since τγ = σ, σγ = τσ, we have

S−1

⎛
⎝−E 0

0 E

⎞
⎠S =

⎛
⎝L 0

0 L

⎞
⎠ , S−1

⎛
⎝L 0

0 L

⎞
⎠ S =

⎛
⎝−L 0

0 L

⎞
⎠ .

Similar equalities hold for the matrix Z. Consider only the relations connected with the matrix S,
⎛
⎝−E 0

0 E

⎞
⎠

⎛
⎝S1 S2

S3 S4

⎞
⎠ =

⎛
⎝S1 S2

S3 S4

⎞
⎠

⎛
⎝L 0

0 L

⎞
⎠ ,

⎛
⎝L 0

0 L

⎞
⎠

⎛
⎝S1 S2

S3 S4

⎞
⎠ =

⎛
⎝S1 S2

S3 S4

⎞
⎠

⎛
⎝−L 0

0 L

⎞
⎠ ,

−S1 = S1L, −S2 = S2L, S3 = S3L, S4 = S4L,

LS1 = −S1L, LS2 = S2L, LS3 = −S3L, LS4 = S4L.

Let Si =
(

Si1 Si2
Si3 Si4

)
. Then

S12 = S14 = S11 = 0, S22 = S24 = S23 = 0, S31 = S33 = S34 = 0, S41 = S43 = S42 = 0,
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and

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 S21 0

S13 0 0 0

0 S32 0 0

0 0 0 S44

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where all blocks Sij are nondegenerate matrices. Computing S3 = E, we obtain the equalities

S21S32S13 = E, S13S21S32 = E, S32S13S21 = E, S3
44 = E.

After the change of basis with the matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

S−1
21 0 0 0

0 S−1
21 S−1

13 0 0

0 0 E 0

0 0 0 E

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which does not change the matrices of τ and σ, we obtain

M

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 S21 0

S13 0 0 0

0 S32 0 0

0 0 0 S44

⎞
⎟⎟⎟⎟⎟⎟⎠

M−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 E 0

E 0 0 0

0 E 0 0

0 0 0 S44

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Note that, using a block-diagonal matrix M with n× n diagonal blocks, we cannot, in the general case,
bring the block S44 to the form E. But if the polynomial λ3 − 1 can be factored over Zp into linear factors,
S44 can be reduced to the Jordan normal form.

Lemma 4. The matrix of the spread set of a plane π is of the form

θ(V,U) =

⎛
⎝m(U) f(V )

V U

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

m1(U2) m2(V2) f1(U1) f2(V1)

m3(V2) m4(U2) f3(V1) f4(U1)

ν(U1) ψ(V1) μ(U2) ϕ(V2)

V1 U1 V2 U2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where {V1} = Q1, {U1} = K1, {V2} = Q2, {U2} = K2, the functions ν, ψ, μ, ϕ, mi, and fi

(i = 1, . . . , 4) are linear mappings from the set of (n × n)-matrices to GLn(p) ∪ {0}, and

m1(E) = m4(E) = μ(E) = E.

Proof. By Theorem 1, the spread set K ⊂ GL2n(p) ∪ {0} of the Baer subplane π0 is of the form

K =

⎧⎨
⎩U = θ0(V2, U2) =

⎛
⎝μ(U2) ϕ(V2)

V2 U2

⎞
⎠

∣∣∣∣∣∣
U2 ∈ K2, V2 ∈ Q2

⎫⎬
⎭ ,

where K2 and Q2 are s-spread sets in GLn(p) ∪ {0}, μ and ϕ are injective linear mapping from K2

and Q2, respectively, to GLn(p) ∪ {0}, μ(E) = E, ϕ(E) �= E.
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Consider the collineation σ and check the condition⎛
⎝L 0

0 L

⎞
⎠ θ(V,U)

⎛
⎝L 0

0 L

⎞
⎠ ∈ R ∀U ∈ K, ∀V ∈ Q.

Let V = 0, then for any U ∈ K we have
⎛
⎝L 0

0 L

⎞
⎠

⎛
⎝m(U) 0

0 U

⎞
⎠

⎛
⎝L 0

0 L

⎞
⎠ =

⎛
⎝Lm(U)L 0

0 LUL

⎞
⎠ = θ(0, LUL),

therefore LUL ∈ K and m(LUL) = Lm(U)L. Let

m(U) = m(V2, U2) =

⎛
⎝m1(V2, U2) m2(V2, U2)

m3(V2, U2) m4(V2, U2)

⎞
⎠ ,

where V2 ∈ Q2, U2 ∈ K2, then

Lm(U)L =

⎛
⎝ m1(V2, U2) −m2(V2, U2)

−m3(V2, U2) m4(V2, U2)

⎞
⎠ .

Taking into account that LUL =
(

μ(U2) −ϕ(V2)
−V2 U2

)
, for any U2 ∈ K2 and V2 ∈ Q2, we obtain the equalities

m1(V2, U2) = m1(−V2, U2), −m2(V2, U2) = m2(−V2, U2),
−m3(V2, U2) = m3(−V2, U2), m4(V2, U2) = m4(−V2, U2).

Since the functions mi are additive, it follows that m1 and m4 do not depend on V2, m2 and m3 do not
depend on U2. Thus, we can write down

m(U) =

⎛
⎝m1(U2) m2(V2)

m3(V2) m4(U2)

⎞
⎠ .

Let now U = 0, then for any V ∈ Q we have
⎛
⎝L 0

0 L

⎞
⎠

⎛
⎝0 f(V )

V 0

⎞
⎠

⎛
⎝L 0

0 L

⎞
⎠ =

⎛
⎝ 0 Lf(V )L

LV L 0

⎞
⎠ = θ(LV L, 0).

From this condition it follows that the s-spread set Q also defines a semifield plane admitting the Baer
involution

(
L 0
0 L

)
. Therefore, each matrix V is of the form

V =

⎛
⎝ν(U1) ψ(V1)

V1 U1

⎞
⎠ ,

where {V1} = Q1 and {U1} = K1 are s-spread sets in GLn(p)∪{0}, ν(E) = E, ψ(E) �= E. Computing
Lf(V )L = f(LV L), we obtain relations for the functions fi, which are similar to given above. Hence

f(V ) =

⎛
⎝f1(U1) f2(V1)

f3(V1) f4(U1)

⎞
⎠ . �

Lemma 5. Let σ0 be the restriction of σ to π0, and let π1 = F(σ0) be the Baer subplane in π0 fixed
by the involution σ0. Then

(
I 0
0 J

)
is an autotopism of π1, and I = J .
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Proof. Let us write down the collineation γ =
(

S 0
0 Z

)
in the form (5) using the following notation for

blocks:

E1 =

⎛
⎝E 0

0 0

⎞
⎠ , E2 =

⎛
⎝0 E

0 0

⎞
⎠ , E3 =

⎛
⎝0 0

E 0

⎞
⎠ , EI =

⎛
⎝0 0

0 I

⎞
⎠ , EJ =

⎛
⎝0 0

0 J

⎞
⎠ .

Then

S =

⎛
⎝E3 E1

E2 EI

⎞
⎠ , Z =

⎛
⎝E3 E1

E2 EJ

⎞
⎠ , S−1 = S2 =

⎛
⎝E2 E3

E1 E2
I

⎞
⎠ .

Since γ is a collineation, it follows that for each matrix θ(V,U) from the spread set R of π the product
S−1θ(V,U)Z also belongs to R. In particular, for V = 0 and U = E, we have

S−1θ(0, E)Z = S−1Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

E 0 0 0

0 E 0 0

0 0 E 0

0 0 0 I2J

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R,

whence S−1Z = E, I2J = I−1J = E, I = J , Z = S, γ =
(

S 0
0 S

)
.

Further, for V = 0 and arbitrary U ∈ K, we obtain

S−1θ(0, U)S =

⎛
⎝E2 E3

E1 E2
J

⎞
⎠

⎛
⎝m(U) 0

0 U

⎞
⎠

⎛
⎝E3 E1

E2 EJ

⎞
⎠

=

⎛
⎝E2m(U)E3 + E3UE2 E2m(U)E1 + E3UEJ

E1m(U)E3 + E2
JUE2 E1m(U)E1 + E2

JUEJ

⎞
⎠ = θ(V ,U)

for some V ∈ Q, U ∈ K. Taking into account the preceding lemma, we can write down the matrices
U ∈ K and m(U) in the form

U =

⎛
⎝μ(U2) ϕ(V2)

V2 U2

⎞
⎠ , m(U) =

⎛
⎝m1(U2) m2(V2)

m3(V2) m4(U2)

⎞
⎠ .

Then

U = E1m(U)E1 + E2
JUEJ

=

⎛
⎝E 0

0 0

⎞
⎠

⎛
⎝m1(U2) m2(V2)

m3(V2) m4(U2)

⎞
⎠

⎛
⎝E 0

0 0

⎞
⎠ +

⎛
⎝0 0

0 J2

⎞
⎠

⎛
⎝μ(U2) ϕ(V2)

V2 U2

⎞
⎠

⎛
⎝0 0

0 J

⎞
⎠

=

⎛
⎝m1(U2) 0

0 J2U2J

⎞
⎠ ∈ K.

Hence J−1U2J ∈ K2 for any U2 ∈ K2. Therefore, the matrix
(

J 0
0 J

)
defines an autotopism of the

semifield plane with spread set K2, i.e., of π1.

Lemma 6. In the notation of Lemma 4, we have m1(U2) = μ(J−1U2J), m4(U2) = μ(JU2J
−1) for

all U2 ∈ K2, f1(U1) = m3(JU1), f4(U1) = ϕ(JU1)J for all U1 ∈ K1, and in addition K1 = J−1Q2.
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Proof. Based on the proof of the preceding Lemma, consider θ(V ,U ) = S−1θ(0, U)S. Since

U = U(0, J−1U2J) =

⎛
⎝μ(J−1U2J) 0

0 J−1U2J

⎞
⎠ ,

we have m1(U2) = μ(J−1U2J). Further, we have

m(U) = E2m(U)E3 + E3UE2 =

⎛
⎝m4(U2) 0

0 μ(U2)

⎞
⎠ =

⎛
⎝m1(J−1U2J) m2(0)

m3(0) m4(J−1U2J)

⎞
⎠ .

Equating the blocks, we obtain for all U2 ∈ K2 and V2 ∈ Q2

m1(J−1U2J) = m4(U2), m4(J−1U2J) = μ(U2).

Hence m4(U2) = m1(J−1U2J) = μ(J−2U2J
2) = μ(JU2J

−1). Further,

V = E1m(U)E3 + E2
JUE2 =

⎛
⎝m2(V2) 0

0 J2V2

⎞
⎠ ,

f(V ) = E2m(U)E1 + E3UEJ =

⎛
⎝m3(V2) 0

0 ϕ(V2)J

⎞
⎠ =

⎛
⎝f1(J2V2) f2(0)

f3(0) f4(J2V2)

⎞
⎠ .

Since V ∈ Q, we have J2V2 ∈ K1 for all V2 ∈ Q2, i.e., K1 = J−1Q2. Since Q contains the identity
matrix, the set Q2 contains the matrix J . Comparing V and V , we obtain

⎛
⎝ν(J−1V2) ψ(0)

0 J−1V2

⎞
⎠ =

⎛
⎝m2(V2) 0

0 J−1V2

⎞
⎠ ,

hence m2(V2) = ν(J−1V2) ∀V2 ∈ Q2.

Writing down f(V ), we have
(

f1(J−1V2) f2(0)

f3(0) f4(J−1V2)

)
=

(
m3(V2) 0

0 ϕ(V2)J

)
, which implies f1(U1) =

m3(JU1), f4(U1) = ϕ(JU1)J ∀U1 ∈ K1.

Taking into account Lemma 6, we change the blocks mi(U2) and fi(V1), i = 1, 2, 3, 4, in the
statement of Lemma 4 and obtain the following expression for a matrix from the spread set of π:

θ(V,U) =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ(J−1U2J) ν(J−1V2) m3(JU1) f2(V1)

m3(V2) μ(JU2J
−1) f3(V1) ϕ(JU1)J

ν(U1) ψ(V1) μ(U2) ϕ(V2)

V1 U1 V2 U2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Lemma 7. Q2 = J−1Q1, K1 = JQ1, and, in addition, for all V1 ∈ Q1, U1 ∈ K1, V2 ∈ Q2, we have
f1(U1) = ψ(J−1U1), f2(V1) = ϕ(J−1V1)J−1, f3(V1) = ν(JV1), m3(V2) = ψ(JV2).

Proof. Consider an arbitrary element

V =

⎛
⎝ν(U1) ψ(V1)

V1 U1

⎞
⎠ , V ∈ Q,
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and compute the product

S−1θ(V, 0)S =

⎛
⎝E3V E3 + E2f(V )E2 E3V E1 + E2f(V )EJ

E2
JV E3 + E1f(V )E2 E2

JV E1 + E1f(V )EJ

⎞
⎠ = θ(V ,U ).

Here

U = E2
JV E1 + E1f(V )EJ =

⎛
⎝ 0 f2(V1)J

J2V1 0

⎞
⎠ ∈ Q,

then J2V1 ∈ Q2 and ϕ(J2V1) = f2(V1)J . Since V1 ∈ Q1 is arbitrary, we have Q2 = J−1Q1, J ∈ Q1,
f2(V1) = ϕ(J−1V1)J−1.

Further, m(U) = E3V E3 + E2f(V )E2, hence
⎛
⎝ m1(0) m2(J2V1)

m3(J2V1) m4(0)

⎞
⎠ =

⎛
⎝ 0 f3(V1)

ψ(V1) 0

⎞
⎠ ,

then m2(J2V1) = f3(V1) and m3(J2V1) = ψ(V1), i.e., m3(V2) = ψ(JV2) for any V2 ∈ Q2. Consider
V = E2

JV E3 + E1f(V )E2 ∈ Q. We obtain
⎛
⎝ 0 f1(U1)

J2U1 0

⎞
⎠ =

⎛
⎝ ν(0) ψ(J2U1)

J2U1 0

⎞
⎠ .

Then J2U1 ∈ Q1, J−1K1 = Q1, f1(U1) = ψ(J2U1). For f(V ) = E3V E1 + E2f(V )EJ , we obtain
⎛
⎝ 0 f4(U1)J

ν(U1) 0

⎞
⎠ =

⎛
⎝ f1(0) f2(J2U1)

f3(J2U1) f4(0)

⎞
⎠ .

Equating the corresponding elements and using the equalities obtained above, we arrive at the desired
result.

Lemma 7 completes the proof of Theorem 2.

4. EXAMPLES OF SEMIFIELD PLANES OF ORDER 81

Consider a semifield plane π of order 34 whose autotopism group contains a Baer involution. Using
Theorem 1, we define a plane π by an 8-dimensional linear space over the field Z3 and a spread set
R ⊂ GL4(3) ∪ {0} of the form (1). Then the spread set K ⊂ GL2(3) ∪ {0} of the Baer subplane π0 is a
2-dimensional linear space

K = {U = u1D + u2E | u1, u2 ∈ Z3}, (6)

{D,E} is a basis of K. Obviously, the subplane π0 is Desargues, K is a field of order 9. By Lemma 2,
Q = K. Without loss of generality, we can take D = ( 1 1

1 0 ). The linear functions m and f can be
represented in the form

m(u1D + u2E) = u1M + u2E, f(u1D + u2E) = u1F1 + u2F2

for each U = u1D + u2E ∈ K. Here M,F1, F2 ∈ GL2(3), m(E) = E, F2 = f(E) �= E.
If the matrices M , F1, and F2 are chosen in such a way that for all x, y, z, t ∈ Z3 the matrix

θ(xD + yE, zD + tE) =

⎛
⎝zM + tE xF1 + yF2

xD + yE zD + tE

⎞
⎠
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= x

⎛
⎝ 0 F1

D 0

⎞
⎠ + y

⎛
⎝0 F2

E 0

⎞
⎠ + z

⎛
⎝M 0

0 D

⎞
⎠ + t

⎛
⎝E 0

0 E

⎞
⎠

is either zero (for x = y = z = t = 0) or nondegenerate, then the triple of matrices M , F1, F2 defines a
semifield plane π satisfying the indicated conditions.

With the use of computer, we have obtained 106 collections of matrices M , F1, F2, i.e., constructed
106 semifield planes of order 81 admitting a Baer involution in the translational complement. Consider-
ing basis transformations in the 8-dimensional linear space preserving the Baer involution τ on the form
(3), one can reduce this list.

In the table below we present the collections of matrices M , F1, F2 defining six pairwise nonisomor-
phic planes and the orders of the left, the middle, and the right nuclei Wl, Wm, Wr of the corresponding
semifields. The plane π6 is coordinatized by a field and therefore is Desargues.

Plane Orders of nuclei Wl, Wm, Wr M F1 F2

π1 3, 3, 9 ( 0 2
2 1 ) ( 1 0

1 1 ) ( 2 2
1 2 )

π2 3, 9, 3 ( 0 2
2 1 ) ( 1 0

1 1 ) ( 1 2
2 0 )

π3 9, 3, 3 ( 0 1
1 2 ) ( 1 1

1 0 ) ( 1 2
2 2 )

π4 9, 9, 9 ( 0 2
2 1 ) ( 1 0

0 1 ) ( 2 2
2 0 )

π5 9, 9, 9 ( 0 1
1 1 ) ( 0 2

2 1 ) ( 2 2
0 2 )

π6 81, 81, 81 ( 1 1
1 0 ) ( 1 0

0 1 ) ( 0 1
1 2 )

Constructed examples are also presented in author’s paper [5]. Let now a semifield plane π of order 34

admit a subgroup of autotopisms isomorphic to the alternating group A4. By Theorem 2, π can be
given by an 8-dimensional linear space over Z3 and a spread set of the form (2). Hence it follows that
Q1 = K1 = Q2 = K2 = Z3, Q = K is a field of order nine, and matrices from R ⊂ GL4(3) ∪ {0} are of
the form

θ(x, y, z, t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

t j−1z aj−1y bjx

ajz t jx by

y ax t bz

x y z t

⎞
⎟⎟⎟⎟⎟⎟⎠

, x, y, z, t ∈ Z3.

Here the coefficients a, b, j ∈ Z
∗
3, j3 = 1, define the plane π in the case when all non-zero matrices

θ(x, y, z, t) are nondegenerate. An immediate verification of possible values of a, b, and j and
computation of the determinants shows that the following statement holds.

Lemma 8. The autotopism group of a semifield plane of order 34 does not contain a subgroup
isomorphic to the alternating group A4.

Consider next a spread set of the form (2) for the case |π| = 38. In this case, R ⊂ GL8(3) ∪ {0},
U1, V1, U2, and V2 are (2 × 2)-matrices over Z3. Without loss of generality, we can assume that
Q1 = K1 = Q2 = K2 = K is field (6) of order 9. In addition, one can easily check that in this case
J = E. Since the cells ⎛

⎝ν(U1) ψ(V1)

V1 U1

⎞
⎠ and

⎛
⎝μ(U2) ϕ(V2)

V2 U2

⎞
⎠
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form spread sets of semifield planes of order 34 admitting a Baer involution, one should consider examples
of planes given above. It is clear that (see Remark to Theorem 1), checking possible spread sets K, it
suffices to consider only pairwise nonisomorphic planes, and, for the set Q, all 106 constructed examples
must be considered.

Consider linear mappings

μ(xD + yE) = xM + yE, ϕ(xD + yE) = xF1 + yF2,

ν(xD + yE) = xN + yE, ψ(xD + yE) = xP1 + yP2,

where the triples (M,F1, F2) and (N,P1, P2) define semifield planes of order 34 admitting Baer invo-
lution. Then a matrix from the spread set of a plane of order 38 admitting a subgroup of autotopisms
isomorphic to A4 can be written in the form

θ(x1, y1, z1, t1, x2, y2, z2, t2) = x1

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 F1

0 0 N 0

0 P1 0 0

D 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ y1

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 F2

0 0 E 0

0 P2 0 0

E 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ z1

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 P1 0

0 0 0 F1

N 0 0 0

0 D 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ t1

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 P2 0

0 0 0 F2

E 0 0 0

0 E 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ x2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 N 0 0

P1 0 0 0

0 0 0 F1

0 0 D 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ y2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 E 0 0

P2 0 0 0

0 0 0 F2

0 0 E 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ z2

⎛
⎜⎜⎜⎜⎜⎜⎝

M 0 0 0

0 M 0 0

0 0 M 0

0 0 0 D

⎞
⎟⎟⎟⎟⎟⎟⎠

+ t2

⎛
⎜⎜⎜⎜⎜⎜⎝

E 0 0 0

0 E 0 0

0 0 E 0

0 0 0 E

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In order for a semifield plane given by matrices M , F1, F2, N , P1, P2 to exist, it is necessary that the
matrices

θ(x1, y1, z1, t1, 0, 0, 0, 0) and θ(0, 0, 0, 0, x2 , y2, z2, t2)

be nondegenerate for all nonzero vectors (xi, yi, zi, zi). The checking of the 1696 possibilities for
the matrices (M,F1, F2, N, P1, P2) with the computation of the determinants of order 4 leads to the
restriction of the list to 508 and 674 collections, respectively, in which only 386 collections of matrices
are common. Then, the computation of the determinants of order 8 for the obtained collections and all
8-dimensional vectors (x1, . . . , t2) gives the negative result.

Lemma 9. The group of autotopisms of a semifield plane of order 38 does not contain a subgroup
isomorphic to the alternating group A4.

The absence of a subgroup of autotopisms isomorphic to the alternating group A4 in the group of
collineations of a semifield plane of odd order, in the case of rank two [16], in the case of orders 34 and p4

for an arbitrary prime number 3 < p ≤ 73 (the fact has been checked by direct computation), in the case
of order 38 allows us to suggest the conjecture that such planes do not exist in the general case. Note
that this result would certainly impose a significant restriction on the structure of the autotopism group
of a semifield plane and give possibilities to make next steps in the verification of its solvability.
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