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Numerous important works of famous mathematicians are dealing with uniqueness theorems for
meromorphic functions in the unit disk D. A reader can find a detailed description of these results in
[1–6]. Certain results of that kind are extended on subharmonic functions; see, e.g., [7–10]. The author
continues studies of this subject for logarithmic-subharmonic functions. A non-negative subharmonic
functions u(z) is called logarithmic-subharmonic if ln u(z) is also subharmonic function. We keep
notation and definitions of papers [11, 12]. In addition, we say that a subset S0 of the disk D satisfies
condition (C) (see [6]) if

1) the set E = {|z|; z ∈ S0} is dense in certain interval [r0, 1) of the real axis,

2) for any η > 0 there exists a value δ > 0 such that | arg z| < η for all z ∈ S0 lying inside the ring
1 − δ < |z| < 1.

We denote by Sξ the image of S0 under rotation z′ = ξz, |ξ| = 1, then Sξ has on Γ a unique limit
point ξ. A set N ⊂ Γ is called metrically dense on certain arc γ ⊂ Γ, if linear measure mes(γ′ ∩ N) is
positive for any arc γ′ ⊂ γ. We say (see [13]) that u(z) is subordinated in D to subharmonic function
v(z) if u(z) = v[ω(z)], where the function ω(z) is analytic in D, and ω(0) = 0, |ω(z)| < 1. It is known
(see ([13], P. 109) that the function u(z) is subharmonic in D. The concept of subordination can be
introduced analogously in the case of analytic v(z). Then subordinated function u(z) is also analytic
in unit disk D. A point ξ ∈ Γ is called uncertainty point if there exist two paths j1 and j2 ending at
the point ξ such that Cj1(f, ξ) ∩ Cj2(f, ξ) = ∅. We denote by I(α, β) the arc on Γ with end points
eiα and eiβ , where 0 ≤ α < β ≤ 2π. Assume that σ(I) = D ∩ Nδ(ξ), where δ > 0 and Nδ(ξ) is δ-
neighborhood of the point ξ = eiθ ∈ Γ. The boundary of domain σ(I) on Γ is the arc I(θ − δ, θ + δ).
Let S(α, β) = {z = reiθ : α < θ < β, 0 ≤ r < 1} be a sector of the disk D. We call a set E ⊂ Γ (see [2])
the set of the first category if it is a union of countable family of nowhere dense sets. Otherwise it is the
set of the second category. A set E ⊂ I(α, β) is called remainder set, if its complement in I(α, β) is a set
of the first category. We say that a subharmonic function u(z) has a harmonic majorant in the domain G,
if there exists a harmonic function v(z) such that u(z) ≤ v(z) in G. We put R+ = [0,+∞].

We consider two theorems, which were obtained by M. Arsove, in a convenient for our consideration
form. Theorem A∗ is a generalization of classic Littlewood theorem for subharmonic in D functions
(see [13]), and Theorem B∗ is a subharmonic analog of the N. N. Luzin and I. I. Privalov uniqueness
theorems [1].
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Theorem A∗ ([7]). Let a defined in σ(I) logarithmic-subharmonic function u(z) have a positive
majorant. Then finite radial limit lim

r→1
u(reiθ) exists everywhere on I(θ − δ, θ + δ) excluding,

maybe, a set E of null measure.

Theorem B∗ ([7]). Let a defined in D logarithmic-subharmonic function u(z) �≡ 0, and I(α, β) be
an arc of Γ. If lim

r→1
supu(reiθ) < +∞ for θ ∈ A, where A is a remainder set on I(α, β), then the set

of values θ such that lim
r→1

inf u(reiθ) = 0 is not metrically dense in I(α, β).

In what follows we need also the theorems proved by E. Collingwood, F. Bagemihl, K. Barth and
W. Schneider, J. Meek.

Theorem C∗ ([2]). Let either real or complex function f(z) be defined in D, and let {Sξ} be a
family of continuums obtained by rotation around the origin of a non-degenerate continuum S1,
which has unique common point ξ = 1 with Γ. Then C(f, ξ, Sξ) = C(f, ξ,D) for points ξ of certain
remainder set on Γ.

Theorem D∗ ([2]). Let f(z) be any complex-valued function on D. Then the set of its uncertainty
points is no more than countable.

Theorem E∗ ([6]). Let μ(r) > 0 be any decreasing function on [0, 1) such that lim
r→1

μ(r) = 0.

Then there exists a holomorphic in D function h(z) �≡ 0 such that |h
(
reiθ

)
| ≤ 1

μ(r) for r → 1 and

lim
r→1

h
(
reiθ

)
= 0 for all values θ ∈ E ⊂ Γ, where mes E = 2π.

Theorem F∗ ([15]). Let a normal subharmonic in D function u(z) satisfy the condition
2π∫

0

∣∣u(reiθ)
∣∣ dθ = O(1) for r → 1. Then u(z) has finite angular limits almost everywhere on Γ.

Let us formulate the main results of the present paper.

Theorem 1. If we can find for a continuous and logarithmic-subharmonic in D function f(z)
a set S0 with property (C) and a set M of the second category on some arc γ ⊂ Γ such that
C(f, ξ, Sξ) is bounded from above at each point ξ ∈ M , and if each point ξ of some metrically
dense on the arc γ set N is end point of a curve Lξ such that C(f, ξ, Lξ) = {0}, then f(z) ≡ 0.

Remark 1. If we assume additionally that the paths Lξ are non-tangent, then we can replace the
condition C(f, ξ, Lξ) = {0} by assumption 0 ∈ C(f, ξ, Lξ).

Theorem 2. Let μ(r) > 0 be arbitrary decreasing function on [0, 1) such that lim
r→1

μ(r) = 0. Assume

that we can find for a logarithmic-subharmonic and continuous in D function f(z) a subset S0 of
the disk D with property (C) and a set M of the second category on some arc γ ⊂ Γ such that
f(z) = O(μ(|z|)) for z → ξ, z ∈ Sξ, for any point ξ ∈ M . Then f(z) ≡ 0.

We describe calculating parts of the proof of the main results in the following lemmas.

Lemma 1. Let f(z) be a continuous logarithmic-subharmonic function, and there exist a subset S0

with property (C) and a set E of the second Baire category on some arc γ ⊂ Γ such that
C(f, ξ, Sξ) �= R+ at each point ξ ∈ E. If any point ξ of some metrically dense on arc γ set N is end
point of a curve Lξ such that C(f, ξ, Lξ) = {0}, then there exists at least one point ξ0 ∈ γ such that
the function f(z) has null radial boundary limits at almost all points of certain neighborhood
of ξ0 on Γ.

RUSSIAN MATHEMATICS (IZ. VUZ) Vol. 60 No. 9 2016



BOUNDARY THEOREMS OF UNIQUENESS 3

Proof. We apply the method from [6]. If a mapping f(z) and a set S0 in the disk D satisfies condition
(C), then by virtue of Theorem C∗ the set of points ξ ∈ Γ such that C(f, ξ, Sξ) �= C(f, ξ,D) is the set
of the first category with respect to Γ. This result under assumptions of the lemma means that the
arc γ ⊂ Γ contains at least one point ξ0 ∈ γ such that C(f, ξ0, Sξ0) = C(f, ξ0,D), and, consequently,
C(f, ξ0,D) �= R+. Since the function f(z) is continuous and D is connected, the limit set C(f, ξ0,D)
is also connected. Hence, this limit set is some segment [a, b], where a ≥ 0, b ≤ +∞ and a < b. The
set N is metrically dense on γ and C(f, ξ, Lξ) = {0} for ξ ∈ N , whence, limit set C(f, ξ0,D) is bounded
from above. Consequently, the function f(z) is bounded from above subharmonic function in some
neighborhood of the arc γ0 ⊂ γ (ξ0 ∈ γ0). Therefore, the function f(z) has positive harmonic majorant
in the mentioned neighborhood, and Theorem A∗ implies that the function f(z) has finite radial limits at
each point of boundary of the neighborhood of point ξ0 on Γ excluding, maybe, some set F , mes F = 0.
Since any countable set has null measure, we obtain for ξ ∈ N by virtue of Theorem D∗ and condition
C(f, ξ, Lξ) = {0} that the function f(z) has null limits at any point of the boundary of the mentioned
neighborhood of point ξ0 on Γ excluding, maybе, some set E, mes E = 0.

Remark 2. If we assume additionally that the curves Lξ are non-tangential, then we can replace the
assumption C(f, ξ, Lξ) = {0} in the formulation of Lemma by weaker condition 0 ∈ C(f, ξ, Lξ) for
ξ ∈ N .

To prove Theorem 2 we need

Lemma 2. Let f(z) be continuous subharmonic function in the disk D. If there exist a subset S0

of the disk D with property (C) and a set M of the second category on γ ⊂ Γ such that +∞ /∈
∪

ξ∈M
C(f, ξ, Sξ), then we can find an arc γ0 ⊂ γ such that

1) the set M ∩ γ0 is dense on γ0,

2) M ∩ γ0 is the set of the second category on γ0,

3) the function f(z) is uniformly bounded from above in an appropriate neighborhood of the
arc γ0 in D.

Proof. We apply the scheme, which was offered for meromorphic functions by E. Collingwood (see, e.g.,
[6]) for chords instead of Sξ. We denote by E(θ,N) the set of all points ζ = eiθ ∈ M where f(z) < N for
any z ∈ Sζ , N is an integer number. Let us consider a sequence of numbers N1 < N2 < · · · < Nν < · · · .

Clearly, E(θ,Nν) ⊂ E(θ,Nν+1) for ν = 1, 2, . . . Then M =
∞
∪

ν=1
E(θ, ν). But M is a set of the second

category on γ ⊂ Γ. Therefore, at least one of sets E(θ, ν) (for example, E(θ, ν0)), is a set of the second
category on γ ⊂ Γ. Hence, there exists an arc γ0 ⊂ γ, where the set E(θ, ν0) is also dense. Since
E(θ, ν0) ⊂ M , it follows that the M is dense on γ0, what proves Proposition 1. Since the E(θ, ν0) ⊂ M

is of the second category on γ0, therefore Proposition 2 is valid. At any point ζ = eiθ ∈ E(θ, ν0) ∩ γ0 we
have for all z ∈ Sζ

f(z) < ν0. (1)

Let us prove that the inequality

f(z) ≤ ν0 (2)

is satisfied inside curvilinear quadrangle G, which does not contain the origin, and is bounded by arc γ0,
two curves Sζ drawn at endpoints of the arc γ0, and the circle |z| = r intersecting these curves Sζ .
Indeed, by virtue of inequality (1) and since E(θ, ν0) is dense on γ0, every point of the domain G is
condensation point for the set of points z where f(z) < ν0. By virtue of the continuity of the function f(z)
we have inequality (2), and Proposition 3 is proved.

Lemma 3. Let a defined in D function u(z) be subordinated to a logarithmic-subharmonic
function v(z). Then u(z) is logarithmic-subharmonic function in D.
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Proof. Lemma 3 implies that u1(z) = ln v(z) is logarithmic-subharmonic function. Hence, the func-
tion u2(z) = u1(ω(z)) = ln v(ω(z)) is subordinated in D to subharmonic function u1(z). I. I. Privalov
proved ([13], P. 109) that in this case the function u2(z) is subharmonic in D. Then the function
exp{u2(z)} is subharmonic by virtue of the properties of subharmonic functions (ibid., P. 59). Whence,
exp{u2(z)} is logarithmic-subharmonic function, and there is valid the relation

exp{u2(z)} = exp{u1(ω(z))} = v(ω(z)) = u(z). (3)

We conclude from (3) that the function u(z) is logarithmic-subharmonic.

Proof of Theorem 1 is based on Lemma 1. According to the lemma, there exists at least one
point ξ0 ∈ γ such that the function f(z) has null radial boundary limits at almost all points of certain
neighborhood of ξ0 in Γ. Since the function f(z) is bounded from above in the mentioned neighborhood,
and, consequently, has positive harmonic majorant, by virtue of Theorem B∗ we have f(z) ≡ 0. �

Remark 3. In a special case, where Sξ, Lξ are radii and M is remainder set on γ, Theorem 1 for
subharmonic functions was proved by M. Arsove [7].

Proof of Theorem 2. According to Lemma 2, the function f(z) is uniformly bounded from above in a
neighborhood of certain arc γ0 ⊂ γ and M0 = M ∩ γ0 is set of the second category on γ0. By virtue of
Theorem E∗ there exists a holomorphic in D function h(reiθ) such that |h(reiθ)| < 1

μ(r) as r → 1 and

lim
r→1

h(reiθ) = 0 for all values θ ∈ E ⊂ Γ, mes E = 2π. Let N = E ∩ γ0. Then the set N is metrically

dense on γ0. Clearly, Q = N ∪ M0 is the set of the second category and positive measure. Since f(z)
and |h(z)| are logarithmic-subharmonic functions, the function F (z) = f(z) · |h(z)| is also logarithmic-
subharmonic, and it satisfies assumptions of Theorem 1 on the arc γ0, if we consider the radii with end
points in corresponding points ξ in the capacity of Sξ and Lξ. Hence, F (z) ≡ 0, and, consequently,
f(z) ≡ 0. �

Let us study certain applications of the obtained results.

Theorem 3. Let a defined in D function u(z) be subordinated to a logarithmic-subharmonic
function v(z) satisfying assumptions of Theorem 1. Then u(z) ≡ 0.

Proof. By virtue of Lemma 3 the function u(z) is logarithmic-subharmonic in D. Its subordination
means validity of the representation

u(z) = v(ω(z)). (4)

Relations (4), ω(0) = 0 and |ω(z)| < 1 imply that analytic function ω(z) maps any closed domain G ⊂ D

containing point z = 0 onto closed domain G1 < |ω| < 1 containing the point ω = 0. Theorem 1 enables
to conclude that v(z) ≡ 0. It follows from relation (4) that u(z) ≡ 0 on G. Thus, u(z) ≡ 0 in D by virtue
of the uniqueness theorem for logarithmic-subharmonic functions.

Corollary 1. Let a defined in D function u(z) be subordinated to a normal logarithmic-subharmonic
function v(z) such that lim

z→ξ, z∈Lξ

v(z) = 0 at every point ξ ∈ E ⊂ Γ, mes E > 0, where Lξ ⊂ D is a

non-tangential to Γ path ending at the point ξ. Then u(z) ≡ 0.

Proof. Indeed, by virtue of the well-known Rung theorem [14] the function v(z) has null angular
boundary limit at any point ξ ∈ E. On the other hand, by the uniqueness theorem for logarithmic-
subharmonic functions from [8] we have v(z) ≡ 0 in D. Then we repeat the considerations from the
proof of Theorem 3, and by means of relation (4) obtain the identity u(z) ≡ 0 in D.
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Corollary 2. Let a defined in D function u(z) be subordinated to a normal logarithmic-subharmonic
function v(z) satisfying the condition

∫ 2π

0
v+(reiθ)dθ = O(1) for r → 1. (5)

If any point ξ of certain set E ⊂ Γ, mes E > 0, is end point of a path Lξ ⊂ D such that lim
z→ξ,z∈Lξ

u(z) = 0,

then u(z) ≡ 0.

Proof. By virtue of Theorem F∗ under condition (5) a normal subharmonic function u(z) has finite
angular limits everywhere on Γ excluding, maybe, a set E1, mes E1 = 0. By virtue of Theorem D∗

function v(z) has null angular limits everywhere on set E excluding, maybe, a set F = (E \ E1) ∪ E2,
where E2 is countable set, mes E2 = 0, mes F > 0. Hence, v(z) ≡ 0 and u(z) ≡ 0 in D by the
uniqueness theorem for logarithmic-subharmonic functions [8].

Let us consider an application of Theorem 2.

Theorem 4. Let μ(r) > 0 be a decreasing function on [0, 1) such that lim
r→1

μ(r) = 0. Let u(z)

be subordinated in D to a logarithmic-subharmonic function v(z) satisfying assumptions of
Theorem 2. Then u(z) ≡ 0.

The proof is analogous to the proof of Theorem 3, but instead of Theorem 1 we use Theorem 2.

Let us consider one more general assertion.

Theorem 5. Let a defined in the sector S(α, β) subharmonic function u(z) satisfy the condition
∫ β

α

∣
∣
∣u(reiθ)

∣
∣
∣ dθ = O(1) as r → 1,

where 0 ≤ α < β ≤ 2π. If any point ξ ∈ I(α, β) is end point of a path Lξ such that

C(u, ξ, Lξ) = {0}, (6)

then u(z) ≡ 0.

Proof. By means of I. I. Privalov considerations (see [13], pp. 194–196) we represent the function
u(z) in the sector S(α, β) as a sum of negative subharmonic function u1(z) and positive harmonic
function h(z), i.e., u(z) = u1(z) + h(z). As known, a positive harmonic function h(z) (see [13]) has
finite angular limits everywhere on I(α, β) excluding, maybe, a set E1, mes E1 = 0. On the other hand,
a negative subharmonic function u1(z) has positive harmonic majorant in S(α, β). Therefore, by virtue of
Theorem A∗ the function u1(z) has finite radial limits everywhere on I(α, β) excluding, maybe, a set E2,
mes E2 = 0. By virtue of Theorem D∗ and condition (6) we obtain equality lim

r→1
u(reiθ) = lim

r→1
u(rξ) = 0

for any ξ ∈ I(α, β) \E, where E = E1 ∪E2 ∪E3, E3 is countable set, and mes E = 0. We conclude due
to Theorem B∗ that u(z) ≡ 0.

Remark 4. If we assume additionally that the paths Lξ are non-tangential, then condition (6) can be
replaced by weaker one 0 ∈ C(u, ξ, Lξ).

Thus, we prove here new boundary theorems of uniqueness not only for logarithmic-subharmonic
functions, but for subordinated subharmonic functions as well. The author does not know studies of the
boundary uniqueness for this class of subharmonic functions.
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