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Abstract—Using the method of spectral analysis, for the mixed type equation uxx + (sgn y)uyy = 0
in a rectangular domain we establish a criterion of uniqueness of its solution satisfying periodicity
conditions by the variable x, a nonlocal condition, and a boundary condition. The solution is
constructed as the sum of a series in eigenfunctions for the corresponding one-dimensional spectral
problem. At the investigation of convergence of the series, the problem of small denominators
occurs. Under certain restrictions on the parameters of the problem and the functions, included
in the boundary conditions, we prove uniform convergence of the constructed series and stability of
the solution under perturbations of these functions.
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1. STATEMENT OF THE PROBLEM AND MAIN RESULTS

Let l, α, and β be given positive numbers. We consider the non-homogeneous mixed type equation

Lu ≡ uxx + (sgn y)uyy = F (x, y) (1)

in the rectangular domain D = {(x, y) | 0 < x < l, −α < y < β}.

Dezin [1, 2] noted that the method of solvable extensions for differential operators can be adopted to
the Lavrent’ev–Bitsadze operator L, under conditions of periodicity by x:

u(0, y) = u(l, y), ux(0, y) = ux(l, y), −α ≤ y ≤ β, (2)

and under the gluing conditions

u(x, 0 + 0) = u(x, 0 − 0) = u(x, 0), uy(x, 0 + 0) = uy(x, 0 − 0) = uy(x, 0), 0 ≤ x ≤ l. (3)

In addition, we set the following condition by y:

u(x, β) = 0, 0 ≤ x ≤ l, (4)

uy(x,−α) − λu(x, 0) = 0, 0 ≤ x ≤ l, (5)

with a real parameter λ; in [1] we assume l = 2π, α = 1, and β = 1.
Problem (1)–(5) was investigated by Nakhusheva ([3]; [4], pp. 143–153) for the case α = l,

F (x, y) = f(x, y)H(y), H(y) being the Heaviside function, and λ ≥ 0. It was proved that for λ < 0
the homogeneous problem (f(x, y) ≡ 0) has non-trivial solutions.

In the paper we assume, for simplicity, that F (x, y) ≡ 0, i.e., we consider the homogeneous
Lavrent’ev–Bitsadze equation

uxx + (sgn y)uyy = 0, (6)
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NONLOCAL DEZIN’S PROBLEM FOR LAVRENT’EV–BITSADZE EQUATION 53

and we set non-homogeneous conditions by y:

u(x, β) = ϕ(x), 0 ≤ x ≤ l, (7)

uy(x,−α) − λu(x, 0) = ψ(x), 0 ≤ x ≤ l. (8)

We will investigate solvability of problem (2), (3), (6)–(8) depending on the given parameters l, α, β, λ,
and the functions ϕ(x), ψ(x). We find solution

u(x, y) ∈ C1(D) ∩ C2(D+ ∪ D−) (9)

where D+ = D ∩ {y > 0}, D− = D ∩ {y < 0}.
We should note that in [5, 6] by methods of spectral analysis there were investigated the Dirichlet

problem and the problem with periodicity conditions (2) for the degenerated mixed type equation

K(y)uxx + uyy − b2K(y)u = 0

with K(y) = (sgn y)|y|n, n = const > 0, b = const ≥ 0. Here we apply the method for investigation of
the given Dezin’s problem.

We will find a criterion of uniqueness of solution to problem (2), (6)–(9). The solution is constructed
as the sum of a series in eigenfunctions for the corresponding one-dimensional spectral problem. In
reasoning of convergence of the series, the problem of small denominators occurs for the ratio of the
sides lengths α/l of D−. Under some conditions on α/l, λ, β, and functions ϕ(x), ψ(x) we show that the
sum u(x, y) of the series satisfies (9). We also prove stability of the solution with respect to perturbation
of the given functions ϕ(x) and ψ(x).

We should note that the first nonlocal problems for mixed type equations was investigated in [7–9].

2. UNIQUENESS OF SOLUTION

Separating the variables u(x, y) = X(x)Y (y) in (1), we obtain the following spectral problem for
X(x):

X ′′(x) + ˜λX(x) = 0, 0 < x < l, (10)

X(0) = X(l), X ′(0) = X ′(l). (11)

Problem (10), (11) has a countable set of eigenvalues ˜λk = μ2
k =

(

2πk
l

)2
, k ∈ N0 = N ∪ {0}, N, all

of them are simple and the corresponding system of eigenfunctions is Xk(x) =
{

1√
l
,
√

2
l cos μkx,

√

2
l sin μkx

}

. The system is orthonormal and complete in L2[0, l], therefore, it is a orthonormal basis in

the space.
Let there exist a solution to problem (2), (6)–(9). According to [5, 6], we introduce the functions

u0(y) =
1√
l

∫ l

0
u(x, y) dx, uk(y) =

√

2
l

∫ l

0
u(x, y) cos μkx dx, (12)

vk(y) =

√

2
l

∫ l

0
u(x, y) sin μkx dx, k ∈ N, (13)

and show that they satisfy differential equations

u′′
k(y) − (sgn y)μ2

kuk(y) = 0, y ∈ (−α, 0) ∪ (0, β), (14)

u′′
0(y) = 0, y ∈ (−α, 0) ∪ (0, β), (15)

v′′k(y) − (sgn y)μ2
kvk(y) = 0, y ∈ (−α, 0) ∪ (0, β), k ∈ N. (16)

Then we find the general solution to (14)

uk(y) =

{

cke
μky + dke

−μky, y > 0,
ak cos μky + bk sin μky, y < 0.

(17)
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Here ak, bk, ck, and dk are arbitrary constants. We choose the constants so that the conjugation
conditions

uk(0 + 0) = uk(0 − 0), u′
k(0 + 0) = u′

k(0 − 0) (18)

hold. Since (17) satisfy (18), we find

ck =
ak + bk

2
, dk =

ak − bk

2
.

Then, taking into account the found values of ck and dk, we see that (17) has the form

uk(y) =

{

ak cosh μky + bk sinhμky, y > 0;
ak cos μky + bk sin μky, y < 0.

(19)

To find ak and bk we use (7), (8), and (12). We have

uk(β) =

√

2
l

∫ l

0
u(x, β) cos μkx dx =

√

2
l

∫ l

0
ϕ(x) cos μkx dx = ϕk, (20)

u′
k(−α) − λuk(0) =

√

2
l

∫ l

0
[uy(x,−α) − λu(x, 0)] cos μkx dx =

√

2
l

∫ l

0
ψ(x) cos μkx dx = ψk. (21)

Now, based on (19)–(21), we obtain the system

ak cosh μkβ + bk sinh μkβ = ϕk,

ak

(

sin μkα − λ

μk

)

+ bk cos μkα =
ψk

μk
.

(22)

If the determinant of (22)

Δ(k) = cos μkα cosh μkβ − sinhμkβ sin μkα +
λ

μk
sinh μkβ 	= 0 (23)

for all k ∈ N, then the system has a unique solution

ak =
1

Δ(k)

[

ϕk cos μkα − ψk
sinhμkβ

μk

]

, (24)

bk =
1

Δ(k)

[

ϕk

(

λ

μk
− sinμkα

)

+ ψk
cosh μkβ

μk

]

. (25)

We should note that, in addition to k, Δ(k) depends on the parameters α, β, l, and λ.

Substituting (24) and (25) into (22), we find the final form of the functions

uk(y) =

{

ϕk
Ak(α,y)

Δ(k) − ψk
sinh μk(β−y)

Δ(k) , y > 0;

ϕk
Bk(α,y)

Δ(k) + ψk
Ck(y,β)
Δ(k) , y < 0,

(26)

where

Ak(α, y) = cos μkα cosh μky − sinμkα sinhμky +
λ

μk
sinhμky, (27)

Bk(α, y) = cos μk(α + y) +
λ

μk
sinμky, (28)

Ck(y, β) = cosh μkβ sin μky − sinhμkβ cos μky. (29)

By the same way, beginning from (15), based on the conjugation conditions and the boundary conditions
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(7), (8), we find

u0(y) = ϕ0
1 + λy

1 + λβ
+ ψ0

y − β

1 + λβ
, −α ≤ y ≤ β. (30)

Here 1 + λβ 	= 0, ϕ0 = 1√
l

l
∫

0

ϕ(x) dx, ψ0 = 1√
l

l
∫

0

ψ(x) dx. (We deduce (30) and show that 1 + λβ 	= 0,

using (26)–(29) and (23) for the case k = 0.)
Repeating the arguments, similar to those used in constructing (26), based on the general solution

of (16) we find

vk(y) =

{

ϕ̃k
Ak(α,y)

Δ(k) − ˜ψk
sinh μk(β−y)

Δ(k) , y > 0;

ϕ̃k
Bk(α,y)

Δ(k) + ˜ψk
Ck(y,β)
Δ(k) , y < 0,

(31)

where

ϕ̃k =

√

2
l

∫ l

0
ϕ(x) sin μkx dx, ˜ψk =

√

2
l

∫ l

0
ψ(x) sin μkx dx.

Now we can prove the uniqueness theorem for solutions to problem (2), (6)–(9). Let ϕ(x) ≡ 0, ψ(x) ≡ 0
and (23) hold for all k ∈ N0. Then ϕk = ψk = ϕ̃k = ˜ψk = 0 for all k ∈ N0 and ϕ0 = ψ0 = 0. From (26),
(30), (31), (12), and (13) it follows that

∫ l

0
u(x, y) dx = 0,

∫ l

0
u(x, y) cos μkx dx = 0,

∫ l

0
u(x, y) sin μkx dx = 0, k = 1, 2, . . .

Completeness of the system
{

1√
l
,
√

2
l cos μkx,

√

2
l sin μkx

}

in L2[0, l] implies that u(x, y) = 0 a. e. on

[0, l] for every y ∈ [−α, β]. Since u(x, y) is continuous in D, we have u(x, y) ≡ 0 in D.
Let for some α, β, l, λ, and k = p ∈ N0 condition (23) be violated, i.e., Δαβ(p) = 0. Then the

homogeneous problem (2), (6)–(9) with ϕ(x) = ψ(x) ≡ 0 has non-trivial solutions

up(x, y) = up(y) (A1 + A2 cos μpx + A3 sin μpx) , (32)

up(y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sinhμp(β−y)
sinh μpβ , y > 0, p ∈ N;

μp cos μp(α+y)+λ sin μpy
μp cos μpα , y < 0, p ∈ N;

u0(y) = a0(y − β), a0 = const 	= 0, −α ≤ y ≤ β, p = 0.

(33)

Here A1, A2, and A3 are arbitrary constants.
Now a natural question arises about existence of roots of the equation Δ(k) = 0. We represent Δ(p)

it in the form

Δ(p) =
√

cosh 2μpβ sin(θp − 2πpα̃) +
λ

μp
sinhμpβ = 0 (34)

where

θp = arcsin
cosh μpβ

√

cosh 2μpβ
, α̃ =

α

l
.

We see from this that (34) has a countable set of zeroes

α̃ =
(−1)n

2πp
arcsin

λ sinhμpβ

μp

√

cosh 2μpβ
+

θp

2πp
+

πn

2πp
, n ∈ N0, (35)

if the condition

|λ|
μp

sinh μpβ
/

√

sinh2 μpβ + cosh2 μpβ ≤ 1 (36)
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holds. When μp ≥ |λ|, i.e., p ≥ |λ|l/2π, inequality (36) is valid. Therefore, the uniqueness criterion is
proved.

Theorem 1. If there exists a solution to problem (2), (6)–(9), then it is unique if and only if (23)
holds for all k ∈ N0.

3. CONSTRUCTION OF SOLUTION TO THE PROBLEM

Under fulfillment of (23), we find the solution to problem (2), (6)–(9) formally as the sum of the series

u(x, y) =
1√
l
u0(y) +

√

2
l

+∞
∑

k=1

uk(y) cos μkx + vk(y) sin μkx. (37)

Here the coefficients of u0(y), uk(y), and vk(y) are defined by (30), (26), and (31). Since Δ(k) is in
denominators of expressions giving the coefficients of (37) and, as we demonstrated above, Δ(k), as
a functions of α, has a countable set of zeroes (35), we see that for α close to a root of (34), the
value Δ(k) can be sufficiently small. Therefore, the problem of small denominators arises (see, e.g.,
[5, 6, 10]. Consequently, to prove the existence of solution to the problem we need to show that there
exist positive α, β, l, and λ such that for these values of the parameter Δ(k) is separated from zero for
sufficiently large k with an appropriate asymptotics.

Lemma 1. If α̃ = α/l is natural and λ > −2π/l, then there exists a positive C0, depending on λ
and l, such that for all k ∈ N

Δ(k) ≥ eμkβC0 > 0. (38)

Proof. Let α̃ = p ∈ N. Then in view of (34)

Δ(k) = cosh μkβ +
λ

μk
sinhμkβ. (39)

For λ ≥ 0 it follows

Δ(k) ≥ cosh μkβ >
1
2
eμkβ.

If λ < 0, then from (39) we have

Δ(k) > eμkβ

(

1
2
− |λ|

2μk

)

≥ eμkβ

(

1
2
− |λ|l

4π

)

.

This implies (38).

Lemma 2. If α̃ = p/q /∈ N, p, q ∈ N, (q, 4) = 1, (p, q) = 1, then there exist positive C0 and k0

(k0 ∈ N), which, generally speaking, depend on α, l, and λ, such that for all k > k0

|Δ(k)| ≥ C0e
μkβ > 0. (40)

Proof. Let α̃ = p/q ∈ Q where p, q ∈ N, (p, q) = 1, (q, 4) = 1, and p
q /∈ N. In the case, let we divide 2kp

by q with remainder. We have 2kp = sq + r where s, r ∈ N0 and 0 ≤ r < q. Then

Δ(k) =
√

cosh 2μkβ(−1)s+1 sin
(

πr

q
− θk

)

+
λ

μk
sinhμkβ. (41)

The case r = 0 is reduced to the situation α̃ ∈ N considered above.
Let 0 < r < q. Then 1 ≤ r ≤ q − 1, q ≥ 2. Since θk → π

4 as k → +∞, we have θk = π
4 + εk where

εk → 0 as k → +∞. Taking this into account, there exists a natural k1 such that for all k > k1
∣

∣

∣

∣

sin
(

πr

q
− θk

)∣

∣

∣

∣

=
∣

∣

∣

∣

sin
(

πr

q
− π

4
− εk

)∣

∣

∣

∣

≥ 1
2

∣

∣

∣

∣

sin
(

πr

q
− π

4

)∣

∣

∣

∣

= C1 > 0. (42)
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Then, taking into account estimate (42), we have from (41)

|Δ(k)| =
√

cosh 2μkβ

∣

∣

∣

∣

(−1)s+1 sin
(

πr

q
− θk

)

+
λ

μk

sinhμkβ√
cosh 2μkβ

∣

∣

∣

∣

>
eμkβ

√
2

(∣

∣

∣

∣

sin
(

πr

q
− θk

)∣

∣

∣

∣

− |λ|
μk

1√
2

)

≥ eμkβ

√
2

(

C1 −
|λ|l

π
√

2k

)

(43)

for k > k1. From this we see that there exists k2 ∈ N such that for all k > k2

|λ|l
π
√

2k
<

|λ|l
π
√

2k2

≤ C1

2
.

Then (43) implies the desired estimate (40) for all k > k0 = max{k1, k2}.

Lemma 3. If α̃ is an irrational algebraic number of degree 2, then there exist positive constants
β0, λ0, and C0, such that for all β > β0, |λ| < λ0, and k ∈ N

|Δ(k)| ≥ C0

k
eμkβ. (44)

Proof. Beforehand, we will estimate the values of

Δ1(k) = sin(2kπα̃ − θk) = (−1)n sin [πk (2α̃ − n/k) − θk] , n ∈ N. (45)

For every k ∈ N we can find n ∈ N such that
∣

∣

∣α1 −
n

k

∣

∣

∣ <
1
2k

, α1 = 2α̃, (46)

holds [11]. From the Liouville theorem ([12], P. 60) it follows that for every irrational algebraic number
α1 of degree 2 there exists δ > 0 such that for every integer p, q (q > 0)

|α1 − p/q| > δ/q2. (47)

Let n ∈ N be such that (46) holds. Then the inequality

|πk (α1 − n/k)| < π/2, (48)

equivalent to (46), is valid. We will take into consideration that θk → π/4 as k → ∞. Using decreasing
of u = cosh x√

cosh 2x
and increasing of arcsin u, we deduce that

π/4 < θk ≤ θ1 < π/2. (49)

Applying (48) and (49), we have

0 ≤ |πk (α1 − n/k) − θk| ≤ πk |α1 − n/k| + θk < π/2 + θ1 < π.

We see that one of the following two cases is possible:

0 ≤ |πk (α1 − n/k) − θk| < π/2, (50)

π/2 ≤ |πk (α1 − n/k) − θk| < π/2 + θ1. (51)

If (51) holds, then we obtain

|Δ1(k)| =
∣

∣sin
[

πk (α1 − n/k) − θk

]∣

∣

> sin (π/2 + θ1) = cos θ1 = (sinh μ1β)/
√

cosh 2μ1β = C2 ≥ C2/k. (52)

If (50) is valid, then, taking into account the well-known inequality

sin x ≥ 2
π

x, 0 ≤ x <
π

2
,
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we have

|Δ1(k)| =
∣

∣

∣sin
[

πk
(

α1 −
n

k

)

− θk

]

∣

∣

∣ ≥
2
π

∣

∣

∣πk
(

α1 −
n

k

)

− θk

∣

∣

∣ . (53)

Now we will estimate the expression in the right-hand side of (53). We have

|πkα1 − πn − θk| =
∣

∣

∣πkα1 − πn − π

4
− θk +

π

4

∣

∣

∣ =
∣

∣

∣

∣

πkα1 − π
4n + 1

4

∣

∣

∣

∣

−
∣

∣

∣θk −
π

4

∣

∣

∣ . (54)

Taking into consideration (46), we estimate the first summand in the right-hand side of (54):

πk

∣

∣

∣

∣

α1 − π
4n + 1

4k

∣

∣

∣

∣

>
πδ

16k
. (55)

Using the equality

arcsin x − arcsin y = arcsin
(

x
√

1 − y2 − y
√

1 − x2
)

, if x · y > 0,

we estimate the second summand:
∣

∣

∣θk −
π

4

∣

∣

∣ =
∣

∣

∣

∣

arcsin
cosh μkβ√
cosh 2μkβ

− arcsin
1√
2

∣

∣

∣

∣

=
∣

∣

∣

∣

arcsin
(

1√
2

cosh μkβ − sinhμkβ√
cosh 2μkβ

)∣

∣

∣

∣

= arcsin
1

e2μkβ
√

1 + e−4μkβ
<

π

2e2μkβ
, (56)

since

| arcsin x| <
π

2
|x|, 0 < |x| < 1.

Now from (55) and (56) we deduce that

|Δ1(k)| >
2
π

(

πδ

16k
− π

2e2μkβ

)

=
δ

8k
− 1

e2μkβ
>

δ

8k
− 1

2μkβ
=

1
k

(

δ

8
− l

4πβ

)

=
C3

k
(57)

where C3 = (πδβ − 2l)/8πβ > 0 for β > β0 = 2l/πδ.
Let us return to the estimate

|Δ(k)| ≥ eμkβ

√
2

∣

∣

∣

∣

Δ1(k) +
λ

μk
sinhμkβ

/
√

cosh 2μkβ

∣

∣

∣

∣

.

Using (52) and (57), we obtain the desired estimate (44):

|Δ(k)| ≥ eμkβ

√
2

(

|Δ1(k)| − |λ|
μk

1√
2

)

>
eμkβ

√
2

(

C4

k
− |λ|l

2π
√

2k

)

=
eμkβ

k
√

2

(

C4 −
|λ|l

2π
√

2

)

=
eμkβ

k
C0

where C0 =
(

C4 − |λ|l
2π

√
2

)

1√
2

> 0 for |λ| < λ0 = C42π
√

2
l and C4 = min{C2, C3}.

Lemma 4. Let the assumptions of Lemma 1 be valid. Then for every k ∈ N and y ∈ [−α, β]

|uk(y)| ≤ M1 (|ϕk| + |ψk|) , |u′
k(y)| ≤ M2k (|ϕk| + |ψk|) , |u′′

k(y)| ≤ M3k
2 (|ϕk| + |ψk|) ;

|vk(y)| ≤ M1

(

|ϕ̃k| + | ˜ψk|
)

, |v′k(y)| ≤ M2k
(

|ϕ̃k| + | ˜ψk|
)

, |v′′k(y)| ≤ M3k
2
(

|ϕ̃k| + | ˜ψk|
)

;

here and below Mi are positive constants.

By (38), the above estimates follow immediately from (26)–(29) and (31).
By Lemma 4, the terms of series (37), their first order derivatives in D and second order ones in D+

and D− are majorized, by modulus, by the terms of the number series

M4

+∞
∑

k=1

k2
(

|ϕk| + |ψk| + |ϕ̃k| + | ˜ψk|
)

. (58)
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From the theory of Fourier series it is known that if ϕ(x), ψ(x) ∈ C3[0, l] and ϕ(i)(0) = ϕ(i)(l), ψ(i)(0) =
ψ(i)(l), i = 0, 1, 2, then (58) is majorized by the convergent number series

M5

+∞
∑

k=1

1
k

(

|ϕ(3)
k | + |ψ(3)

k | + |ϕ̃(3)
k | + | ˜ψ(3)

k |
)

(59)

where

ϕ
(3)
k =

√

2
l

∫ l

0
ϕ(3)(x) sin μkx dx, ψ

(3)
k =

√

2
l

∫ l

0
ψ(3)(x) sin μkx dx,

ϕ̃
(3)
k =

√

2
l

∫ l

0
ϕ̃(3)(x) cos μkx dx, ˜ψ

(3)
k =

√

2
l

∫ l

0

˜ψ(3)(x) cos μkx dx,

and
+∞
∑

k=1

|ϕ(3)
k |2 ≤ ‖ϕ(3)(x)‖2

L2
,

+∞
∑

k=1

|ψ(3)
k |2 ≤ ‖ψ(3)(x)‖2

L2
,

+∞
∑

k=1

|ϕ̃(3)
k |2 ≤ ‖ϕ(3)(x)‖2

L2
,

+∞
∑

k=1

| ˜ψ(3)
k |2 ≤ ‖ψ(3)(x)‖2

L2
.

Consequently, the sum of (37) satisfies (9).

If the assumptions of Lemma 3 hold, then (37) and the series of its terms’ derivatives up to the second
order are majorized by the terms of the series

M5

+∞
∑

k=1

k3
(

|ϕk| + |ψk| + |ϕ̃k| + | ˜ψk|
)

. (60)

For convergence of (60) it suffices to claim that ϕ(x), ψ(x) ∈ C4[0, l] and ϕ(i)(0) = ϕ(i)(l), ψ(i)(0) =
ψ(i)(l), i = 0, 3.

Now let the assumptions of Lemma 2 be valid. Then, by (40), series (37) and the series of their terms’
derivatives up to the second order are majorized by

M5

+∞
∑

k=k0+1

1
k

(

|ϕ(3)
k | + |ψ(3)

k | + |ϕ̃(3)
k | + | ˜ψ(3)

k |
)

. (61)

If for the numbers α̃, specified in Lemma 2, Δ(k) 	= 0 for all k = 1, k0, then, by the Weierstrass
theorem, convergence of (61) implies that the sum of (37) satisfy (9) and (6).

If for the numbers α̃, specified in Lemma 2, Δ(k) = 0 for some k = k1, k2, . . . , kp ≤ k0, 1 ≤ k1 ≤
k2 < · · · < kp, ki, then problem (2), (3), (6)–(9) is solvable if and only if

ϕkμk cos μkα − ψk sinhμkβ = 0,

ϕ̃kμk cos μkα − ˜ψk sinhμkβ = 0, k = k1, k2, . . . , kp.
(62)

Then the solution is defined as

u(x, y) = u0(y) +
∞
∑

k=1

(k 	= k1, k2, . . . , kp) [uk(y) cos μkx + vk(y) sin μkx] +
∑

m

ũm(x, y); (63)

in the latter sum m takes the values k1, k2, . . . , kp, and

ũp(x, y) = ũp(y) cos μpx + ṽp(y) sin μpx (64)
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where

ũp(y) =

{

ϕp
sinh μpy
sinh μpβ + Cp

sinh μp(β−y)
sinhμpβ , y > 0;

ψp
sinμpy

μp cos μpα + Cp
μp cos μp(y+α)+λ sinμpy

μp cos μpα , y < 0;
(65)

ṽp(y) =

{

ϕ̃p
sinh μpy
sinh μpβ + Cp

sinh μp(β−y)
sinhμpβ , y > 0;

˜ψp
sinμpy

μp cos μpα + Cp
μp cos μp(y+α)+λ sinμpy

μp cos μpα , y < 0,
(66)

and Cp is an arbitrary constant.
We should note that (64)–(66) are written, taking into account the non-zero solutions (32) and (33)

of the homogeneous problem.
Therefore, the following statements are valid.

Theorem 2. If the assumptions of Lemma 1 hold, 1 + λβ 	= 0, ϕ(x), ψ(x) ∈ C3[0, l], ϕ(i)(0) =
ϕ(i)(l), ψ(i)(0) = ψ(i)(l), i = 0, 1, 2, then there exists a unique solution to problem (2), (6)–(9), and
this solution is given by (37).

Theorem 3. If the assumptions of Lemma 3 are valid, 1 + λβ 	= 0, ϕ(x), ψ(x) ∈ C4[0, l], ϕ(i)(0) =
ϕ(i)(l), ψ(i)(0) = ψ(i)(l), i = 0, 3, then there exists a unique solution to problem (2), (6)–(9), and
this solution is given by (37).

Theorem 4. Let the assumptions of Lemma 2 be valid (therefore, (39) holds for all k > k0),
1 + λβ 	= 0, ϕ(x), ψ(x) ∈ C3[0, l], ϕ(i)(0) = ϕ(i)(l), ψ(i)(0) = ψ(i)(l), i = 0, 1, 2. If Δ(k) 	= 0 for all
k = 1, k0, then there exists a unique solution to problem (2), (6)–(9), and this solution is given
by (37). If Δ(k) = 0 for some k = k1, k2, . . . , kp ≤ k0, then problem (2), (6)–(9) is solvable if and
only if (62) are valid, and in the case this solution is given by (63).

4. STABILITY OF SOLUTION UNDER PERTURBATIONS OF ϕ(x) AND ψ(x)

Consider the well-known norms

‖u‖L2[0,1] = ‖u‖L2 =
(∫ l

0
|u(x, y)|2 dx

)1/2

,

‖u(x, y)‖C(D) = max
D

|u(x, y)|.

Theorem 5. Let assumptions of either Theorem 2 or Theorem 3 be valid. Then for solution (37) to
problem (2), (6)–(9) we have the estimates

‖u(x, y)‖L2 ≤ M6

(

‖ϕ(x)‖L2 [0,l] + ‖ψ(x)‖L2 [0,l]

)

, (67)

‖u(x, y)‖C(D) ≤ M7

(

‖ϕ(x)‖C[0,l] + ‖ψ(x)‖C[0,l] + ‖ϕ′(x)‖C[0,l] + ‖ψ′(x)‖C[0,l]

)

(68)

where M6 and M7 do not depend on ϕ(x) and ψ(x).

Proof. We will prove the theorem following paper [13]. Since the system Xk(x) is orthonormal in
L2[0, l], by Lemma 4, we obtain from (37) that

‖u(x, y)‖2
L2

= u2
0(y) +

+∞
∑

k=1

(u2
k(y) + v2

k(y)) ≤ 2˜M2
1

(

ϕ2
0 + ψ2

0

)

+ 2M2
1

+∞
∑

k=1

(

|ϕk|2 + |ψk|2 + |ϕ̃k|2 + | ˜ψk|2
)
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≤ M2
6

(

ϕ2
0 +

+∞
∑

k=1

(ϕ2
k + ϕ̃2

k) + ψ2
0 +

+∞
∑

k=1

(ψ2
k + ˜ψ2

k)
)

≤ M2
6

(

‖ϕ(x)‖2
L2

+ ‖ψ(x)‖2
L2

)

.

Thus follows (67). Let (x, y) be an arbitrary point from D. By Lemma 4,

|u(x, y)| ≤ |u0(y)| + M1

+∞
∑

k=1

(|uk(y)| + |vk(y)|)

≤ ˜M1 (|ϕ0| + |ψ0|) + M1

+∞
∑

k=1

(

|ϕk| + |ψk| + |ϕ̃k| + | ˜ψk|
)

. (69)

We have

ϕk = −ϕ
(1)
k

μk
, ϕ̃k =

ϕ̃
(1)
k

μk
, ψk = −ψ

(1)
k

μk
, ˜ψk =

˜ψ
(1)
k

μk
, (70)

where

ϕ
(1)
k =

√

2
l

∫ l

0
ϕ′(x) sin μkx dx, ϕ̃

(1)
k =

√

2
l

∫ l

0
ϕ′(x) cos μkx dx,

ψ
(1)
k =

√

2
l

∫ l

0
ψ′(x) sin μkx dx, ˜ψ

(1)
k =

√

2
l

∫ l

0
ψ′(x) cos μkx dx.

Taking into account (70), based on the Cauchy–Schwarz inequality we obtain from (69) that

|u(x, y)| ≤ ˜M1

(

|ϕ0| + |ψ0|
)

+ M1

+∞
∑

k=1

1
μk

(

|ϕ(1)
k | + |ϕ̃(1)

k | + |ψ(1)
k | + | ˜ψ(1)

k |
)

≤ ˜M1 (|ϕ0| + |ψ0|) +

+ M1
l

π

( +∞
∑

k=1

1
k2

)1/2[( +∞
∑

k=1

|ϕ(1)
k |2

)1/2

+
( +∞

∑

k=1

|ϕ̃(1)
k |2

)1/2

+
( +∞

∑

k=1

|ψ(1)
k |2

)1/2

+
( +∞

∑

k=1

| ˜ψ(1)
k |2

)1/2]

≤

≤ ˜M2

[

‖ϕ(x)‖L2 + ‖ψ(x)‖L2 +
( +∞

∑

k=1

(|ϕ(1)
k |2 + |ϕ̃(1)

k |2)
)1/2

+
( +∞

∑

k=1

(|ψ(1)
k |2 + | ˜ψ(1)

k |2)
)1/2]

≤

≤ ˜M2

[

‖ϕ(x)‖L2 + ‖ψ(x)‖L2 +
(

|ϕ(1)
0 |2 +

+∞
∑

k=1

(|ϕ(1)
k |2 + |ϕ̃(1)

k |2)
)1/2

+

+
(

|ψ(1)
0 |2 +

+∞
∑

k=1

(|ψ(1)
k |2 + | ˜ψ(1)

k |2)
)1/2]

≤

≤ M7

(

‖ϕ(x)‖L2 + ‖ψ(x)‖L2 + ‖ϕ′(x)‖L2 + ‖ψ′(x)‖L2

)

,

where ϕ
(1)
0 =

√

1
l

l
∫

0

ϕ′(x) dx = 0, ψ
(1)
0 =

√

1
l

l
∫

0

ψ′(x) dx = 0. Thus follows (68).
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