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The differential equations, both ordinary and partial, whose arguments have some shift were studied
in a few papers (e.g., [1–10]). Various authors call such equations functional differential and with delayed
(or deviating) argument. In this paper the variant of shift from [9, 10] is for the first time applied to a
system of partial differential equations of the first order.

Let D = {0 < x < 1, 0 < y < 1} be a domain. Consider a system of equations

α11u1x + α12v1x = a1
11u1 + a1

12u2 + a2
11v1 + a2

12v2 + f1;

α21u2y + α22v2y = a1
21u1 + a1

22u2 + a2
21v1 + a2

22v2 + f2,
(1)

αij , a
k
ij , fi ∈ C(D), i, j, k = 1, 2.

Here vi(x, y) are defined, respectively, with respect to ui(x, y) by the formula

vi(x, y) ≡ ui[λ(y), μ(x)], (2)

where each of the functions λ, μ ∈ C1[0, 1] maps a segment [0, 1] to itself preserving the direction of the
motion. In particular,

λ(0) = μ(0) = 0, λ(1) = μ(1) = 1,

and the second application of the transformation (λ, μ) returns the coordinates (x, y) to their initial
position:

vi[λ(y), μ(x)] ≡ ui{λ[μ(x)], μ[λ(y)]} ≡ ui(x, y). (3)

These properties are possessed by, e.g., the pairs λ = y, μ = x and λ = (ey − 1)/(e − 1), μ =
ln[1 + (e − 1)x], where e is the base of the natural logarithm.

Let us define a regular solution of (1) in D as a solution of the class u1, u2, u1x, u1y ∈ C(D).

Goursat Problem. Find a regular in D solution to system (1), continuously extensible to the boundary
of D, satisfying the conditions

u1(0, y) = ϕ1(y), u2(x, 0) = ψ2(x), x, y ∈ [0, 1]. (4)
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This set-up encapsulates a well-known [1] Goursat problem with conditions (4) for the system

u1x = a1
11u1 + a1

12u2 + f1; u2y = a1
21u1 + a1

22u2 + f2.

Now back to solution of our problem. In the first Eq. (1) assume x = t and integrate it from 0 to x:

(α11u1)(x, y) + α12(x, y)u1(λ(y), μ(x)) = ω1(x, y) + (α12v1)(0, y)

+
∫ x

0
(((α11t + a1

11)u1)(t, y) + (a1
12u2)(t, y) + (α12t + a2

11)(t, y)u1(λ(y), μ(t))

+ a2
12(t, y)u2(λ(y), μ(t)))dt, (5)

where ω1(x, y) = α11(0, y)ϕ1(y) +
x∫
0

f1(t, y)dt. Let us denote the whole right-hand side of (5) as

g1(x, y), then

αi1(x, y)ui(x, y) + αi2(x, y)vi(x, y) = gi(x, y), (6)

where i = 1. In the latter equation assume x = λ(y), y = μ(x), and with (3) we get

αi2(λ(y), μ(x))ui(x, y) + αi1(λ(y), μ(x))vi(x, y) = gi(λ(y), μ(x)). (7)

From relations (6), (7), being a system of linear algebraic equations, one can calculate ui, vi, if the
determinant

Δi(x, y) =

∣∣∣∣∣∣∣
αi1(x, y) αi2(x, y)

αi2(λ(y), μ(x)) αi1(λ(y), μ(x))

∣∣∣∣∣∣∣
(8)

is nonzero. In this case by Cramer’s rule we get

ui(x, y) =
1

Δi(x, y)
(gi(x, y)αi1(λ(y), μ(x)) − gi(λ(y), μ(x))αi2(x, y)), (9)

vi(x, y) =
1

Δi(x, y)
(gi(λ(y), μ(x))αi1(x, y) − gi(x, y)αi2(λ(y), μ(x))). (10)

From (8), in view of (3), we have Δi(λ(y), μ(x)) ≡ Δi(x, y). Assuming in (10) y = μ(x), x = λ(y), in
view of (3) and (2), we get (9). Hence, formulas (9), (10) give the same solutions. Thus, the unique
solution to Eq. (6) is (9). Let us now substitute into (9) the value g1(x, y), being the right-hand side of
(5), so we get

u1(x, y) =
1

Δ1(x, y)
(((α12v1)(0, y) +

∫ x

0
(((α11t + a1

11)u1)(t, y)

+ (a1
12u2)(t, y) + (α12t + a2

11)(t, y)u1(λ(y), μ(t))

+ a2
12(t, y)u2(λ(y), μ(t)))dt)α11(λ(y), μ(x))

− ((α12v1)(0, μ(x)) +
∫ λ(y)

0
(((α11t + a1

11)u1)(t, μ(x)) + (a1
12u2)(t, μ(x)) + (α12t

+ a2
11)(t, μ(x))u1(x, μ(t)) + a2

12(t, μ(x))u2(x, μ(t)))dt)α12(x, y)) + F1(x, y), (11)

where F1(x, y) = 1
Δ1(x,y) (ω1(x, y)α11(λ(y), μ(x)) − ω1(λ(y), μ(x))α12(x, y)).

Let us conduct a similar argument for u2(x, y). Namely, take the second Eq. (1), assume y = τ for it
and integrate it from 0 to y:

(α21u2)(x, y) + α22(x, y)u2(λ(y), μ(x)) = ω2(x, y) + (α22v2)(x, 0)

+
∫ y

0
(a1

21u1(x, τ) + ((α21τ + a1
22)u2)(x, τ)
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+ a2
21(x, τ)u1(λ(τ), μ(x)) + (α22τ + a2

22)(x, τ)u2(λ(τ), μ(x)))dτ, (12)

where ω2(x, y) = α21(x, 0)ψ2(x) +
y∫
0

f2(x, τ)dτ . Let us denote the whole right-hand side of (12) as

g2(x, y), then (12) will take the form of (6) for i = 2. All the arguments between formulas (6), (11), are
repeated for i = 2, hence we do not deploy them here. Now let us substitute into (9), assuming i = 2,
the value g2(x, y), being the right-hand side of (12), so we get

u2(x, y) =
1

Δ2(x, y)
(((α22v2)(x, 0) +

∫ y

0
((a1

21u1)(x, τ) + ((α21τ + a1
22)u2)(x, τ)

+ a2
21(x, τ)u1(λ(τ), μ(x)) + (α22τ + a2

22)(x, τ)u2(λ(τ), μ(x)))dτ)α21(λ(y), μ(x))

− ((α22v2)(λ(y), 0) +
∫ μ(x)

0
((a1

21u1)(λ(y), τ) + ((α21τ + a1
22)u2)(λ(y), τ)

+ a2
21(λ(y), τ)u1(λ(τ), y) + (α22τ + a2

22)(λ(y), τ)u2(λ(τ), y))dτ)α22(x, y)) + F2(x, y), (13)

where F2(x, y) = 1
Δ2(x,y) (ω2(x, y)α21(λ(y), μ(x)) − ω2(λ(y), μ(x))α22(x, y)).

Thus, we get a loaded system (11), (13), containing, except the desired unknowns, v1(0, y) and
v2(x, 0) as well. For their determination in (5) assume y = 0, and in (12) assume x = 0. We get a
system of integral equations

(α11u1)(x, 0) −
∫ x

0
(((α11t + a1

11)u1)(t, 0)dt −
∫ x

0
(a2

12v2)(t, 0)dt = ω1(x, 0)

− (α12v1)(x, 0) + (α12v1)(0, 0) +
∫ x

0
((a1

12u2)(t, 0) + (α12t + a2
11)v1(t, 0))dt, (14)

(α21u2)(0, y) −
∫ y

0
((α21τ + a1

22)u2)(0, τ)dτ −
∫ y

0
(a2

21v1)(0, τ)dτ = ω2(0, y)

− (α22v2)(0, y) + (α22v2)(0, 0) +
∫ y

0
((a1

21u1)(0, τ) + ((α22τ + a2
22)v2)(0, τ))dτ.

Denote

U(x, y) =

⎡
⎢⎣u1(x, 0)

u2(0, y)

⎤
⎥⎦ , A1(x, y) =

⎡
⎢⎣α11(x, 0) 0

0 α21(0, y)

⎤
⎥⎦ ,

A2(x, y) =

⎡
⎢⎣(α11x + a1

11)(x, 0) 0

0 (α21y + a1
22)(0, y)

⎤
⎥⎦ , B(x, y) =

⎡
⎢⎣ 0 a2

12(x, 0)

a2
21(0, y) 0

⎤
⎥⎦ .

We assume
xy∫
0

. . . dt τ means that we integrate the first equation by t from 0 to x, and the second by τ

from 0 to y. Then system (14) takes the form of a vector-matrix equation

(A1U)(x, y) −
∫ xy

0
(A2U)(t, τ)dtτ −

∫ xy

0
(BU)(λ(τ), μ(t))dtτ = Ω(x, y),

where Ω(x, y) is a column vector, whose elements are completely known right-hand sides of the
equations of system (14). Next, use the technique that the author applied in [12] for another problem.
Namely, let us transform the integral equations to the form solved with respect to the desired function.
To do so, we stipulate det A1(x, y) �= 0.
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Thus, we will solve the system

U(x, y) − A−1
1 (x, y)

∫ xy

0
(A2U)(t, τ)dtτ − A−1

1 (x, y)
∫ xy

0
(BU)(λ(τ), μ(t))dtτ = A−1

1 (x, y)Ω(x, y).

In the operator form (introducing an understandable notation K), it looks in the following way:

U − KU = A−1
1 Ω. (15)

For matrices, let us use the norm ([13], P. 410) ‖A‖ = max
1≤i≤2

2∑
k=1

|aik|. Let the estimate ‖A−1
1 A2‖ < M ,

‖A−1
1 B‖ < M be fulfilled, where M > 0 is a certain constant. Let us check that the operator K is

continuous on the set of defined on D continuous vector functions. Let ϕ1, ϕ2 be continuous vector
functions. Then

‖Kϕ1 − Kϕ2‖ < 2M(x + y)‖ϕ1 − ϕ2‖ < 4M‖ϕ1 − ϕ2‖.
Obviously, for any ε > 0 there exists δ = ε/(4M) such that from the condition ‖ω1 − ω2‖ < δ it

follows ‖Kω1 − Kω2‖ < ε. The continuity of the operator K is proved.
Let us show that a certain power of K is a shrinking mapping. Indeed,

‖K2ϕ1 − K2ϕ2‖ <
(4M)2

2!
‖ϕ1 − ϕ2‖, . . . ,

‖Knϕ1 − Knϕ2‖ <
(4M)n

n!
‖ϕ1 − ϕ2‖.

For some n we have (4M)n

n! < 1, thus, Kn is shrinking. It is known ([14], P. 84), if K is a continuous
mapping of a dense metric space to itself such that its certain power is shrinking, then the equation
ω − Kω = 0 has a unique zero solution. Then (15) has a unique solution in the class of continuous
vector functions. Thus, we proved that the elements u1(x, 0), u2(0, y), and so, v1(0, y), v2(x, 0), as well,
are defined in a unique way.

Now consider system (11), (13) for finding u1(x, y), u2(x, y). Introduce the vector

U1(x, y) =

⎡
⎢⎣u1(x, y)

u2(x, y)

⎤
⎥⎦ .

Then

U1(λ(y), μ(x)) =

⎡
⎢⎣u1(λ(y), μ(x))

u2(λ(y), μ(x))

⎤
⎥⎦ =

⎡
⎢⎣v1(x, y)

v2(x, y)

⎤
⎥⎦ .

Denote

C1(t, y) =

⎡
⎢⎣(α11t(t, y) + a1

11(t, y)) a1
12(t, y)

0 0

⎤
⎥⎦ ,

C2(x, τ) =

⎡
⎢⎣ 0 0

a1
21(x, τ) (α21τ (x, τ) + a1

22(x, τ))

⎤
⎥⎦ ,

C3(t, μ(x)) =

⎡
⎢⎣(α11t(t, μ(x)) + a1

11(t, μ(x))) a1
12(t, μ(x))

0 0

⎤
⎥⎦ ,
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C4(λ(y), τ) =

⎡
⎢⎣ 0 0

a1
21(λ(y), τ) (α21τ (λ(y), τ) + a1

22(λ(y), τ))

⎤
⎥⎦ ,

D1(t, y) =

⎡
⎢⎣(α12t(t, y) + a2

11(t, y)) a2
12(t, y)

0 0

⎤
⎥⎦ ,

D2(x, τ) =

⎡
⎢⎣ 0 0

a2
21(x, τ) (α22τ (x, τ) + a2

22(x, τ))

⎤
⎥⎦ ,

D3(t, μ(x)) =

⎡
⎢⎣(α12t(t, μ(x)) + a2

11(t, μ(x))) a2
12(t, μ(x))

0 0

⎤
⎥⎦ ,

D4(λ(y), τ) =

⎡
⎢⎣ 0 0

a2
21(λ(y), τ) (α1

22τ (λ(y), τ) + a2
22(λ(y), τ))

⎤
⎥⎦ , Φ(x, y) =

⎡
⎢⎣F1(x, y)

F2(x, y)

⎤
⎥⎦ .

Then (11), (13) can be represented in the vector-matrix form

U1(x, y) =
α1

11(λ(y), μ(x))
Δ1(x, y)

∫ x

0
C1(t, y)U1(t, y)dt +

α1
21(λ(y), μ(x))

Δ2(x, y)

∫ y

0
C2(x, τ)U1(x, τ)dτ

− α1
12(x, y)

Δ1(x, y)

∫ λ(y)

0
C3(t, μ(x))U1(t, μ(x))dt − α1

22(x, y)
Δ2(x, y)

∫ μ(x)

0
C4(λ(y), τ)U1(λ(y), τ)dτ

+
α1

11(λ(y), μ(x))
Δ1(x, y)

∫ x

0
D1(t, y)U1(λ(y), μ(t))dt +

α1
21(λ(y), μ(x))

Δ2(x, y)

∫ y

0
D2(x, τ)U1(λ(τ), μ(x))dτ

− α1
12(x, y)

Δ1(x, y)

∫ λ(y)

0
D3(t, μ(x))U1(x, μ(t))dt − α1

22(x, y)
Δ2(x, y)

∫ μ(x)

0
D4(λ(y), τ)U1(λ(τ), y)dτ + Φ(x, y),

or in the operator form (introducing the notation K1)

U1 − K1U1 = Φ(x, y). (16)

Then we can prove that the operator K1 is continuous on the set of the defined on D continuous
vector functions, and that for some n Kn

1 is shrinking. We skip the detailed proof of this fact to keep the
paper small enough. From [14] (P. 84) it follows that (16) has a unique solution. If we substitute this
solution into (5), (12), then they will also become identities due to the equivalence of the transformations
carried out. Equations themselves (5), (12) were obtained by direct integration of (1) with conditions (4)
in mind. So, we can one time differentiate (5) and (12) with respect to x and y, correspondingly, that will
lead to identity in (1). Thus, we have

Theorem. If (Δ1 · Δ2)(x, y) · α11(x, 0) · α21(0, y) �= 0 for (x, y) ∈ D (Δ1,Δ2 is defined by (8),
i = 1, 2), then the solution to problem Γ exists and is unique.

All the the conducted arguments are equally good for the case when the domain D is a rectangle with
sides parallel to coordinate axes. A square domain is chosen solely for the purpose of some simplification
of the formulas.
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