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1. INTRODUCTION

In [1], V. A. Arzumanyan proved that a bicyclic semigroup has, up to unitary equivalence, one finite-
dimensional irreducible representation and a series of one-dimensional unitary representations parame-
terized by a unit circle S1. A C∗-algebra generated by an infinite-dimensional irreducible representation
generates the Toeplitz algebra. L. Coburn [2] showed that nonunitary isometric representations of a
semigroup of non-negative integers Z+ generate C∗-algebras that are canonically isomorphic to the
Toeplitz algebra. On the other hand, M. A. Aukhadiev and V. Tepoyan [3] obtained a semigroup
criterion under which each non-unitary isometric representation is extended to a representation of an
inverse semigroup generated by the given semigroup. From this criterion it follows that each isometric
representation of a semigroup Z+ is extended to a representation of bicyclic semigroup Z

∗
+. In this paper

we introduce a concept of index of an element of the semigroup Z
∗
+ and study subsemigroups Z

∗
+,m and

Z
∗
+(m), m ∈ Z+ generated by the elements whose indices have a common divisor m. We show that

non-unitary isometric representations of such semigroups generate subalgebras of the Toeplitz algebra
Tm and T (m) consisting of the elements that are fixed relative to some finite group of automorphisms of
rank m. We give a complete description of irreducible representations of C∗-algebra Tm.

2. BICYCLIC INVERSE SEMIGROUPS

A semigroup S is called inverse, if for any a ∈ S there exists a unique inverse element a∗ ∈ S such
that the equalities a∗aa∗ = a∗ and aa∗a = a hold. It follows from the definition that a∗∗ = a. An
element b of the semigroup S is called an idempotent, if b2 = b. Idempotents of an inverse semigroup
form a commutative subsemigroup in S, which coincides with the set PS = {c ∈ S : c = c∗}.

An inverse semigroup with a unit e is called a bicyclic semigroup, if it is generated by one element a
and the relation a∗a = e. Note that an inverse semigroup generated by representations of a semigroup
of non-negative integers is a bicyclic semigroup. Keeping this in mind, we will further denote a bicyclic
semigroup by Z

∗
+.

It immediately follows from the equality a∗a = e that each element of a bicyclic semigroup has the
form ama∗n, where m and n are non-negative integers.
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THE STRUCTURE OF C∗-SUBALGEBRAS OF THE TOEPLITZ ALGEBRA 11

Define an index of an element b = ama∗n from Z
∗
+ as a number m − n and denote it as ind(b). Note

that ind(b · c) = ind(b) + ind(c) for any elements b, c ∈ Z
∗
+.

Consider a homomorphism τ : Z
∗
+ → Z

∗
+, τ(b) = aba∗, being an embedding of the semigroup Z

∗
+

into itself. By τn let us denote an nth superposition of the mapping τ , i.e., τn(b) = anba∗n. Obviously,
τn : Z

∗
+ → Z

∗
+ is also an embedding. Note that ind(τn(b)) = ind(b) for any n ∈ Z+ and b ∈ Z

∗
+. Fix

the integer m. Let Z
∗
+,m = {b ∈ Z

∗
+ : ind(b) = k · m, k ∈ Z}. Note that in case m = 1 the semigroup

Z
∗
+,1 = Z

∗
+. Let Z

∗
+(m) be an inverse semigroup, generated by the element am. Obviously, Z

∗
+,m and

Z
∗
+(m) are inverse subsemigroups of the bicyclic semigroup Z

∗
+. The semigroup Z

∗
+(m) is bicyclic as

well. Let us establish a connection between the semigroups Z
∗
+,m and Z

∗
+(m).

Lemma 1. The semigroup Z
∗
+,m can be represented as

Z
∗
+,m =

m−1⋃

k=0

τk(Z∗
+(m)).

Proof. Let us show that for any element b ∈ Z
∗
+,m b ∈ τ l(Z∗

+(m)) is true for some 0 ≤ l ≤ m − 1.
Indeed, if b ∈ Z

∗
+,m, then b = amk+la∗mr+l, where 0 ≤ l ≤ m − 1, k, r ∈ Z+. Then

b = alamka∗mra∗l ∈ αl(Z∗
+(m)).

The inclusion
m−1
∪

k=0
τk(Z∗

+(m)) ⊂ Z
∗
+,m is obvious.

3. TOEPLITZ ALGEBRA’S SUBSLAGEBRAS, FIXED RELATIVE TO FINITE GROUP OF
AUTOMORPHISMS

Consider a Hilbert space l2(Z+) with a natural orthonormal basis { ek}k∈Z+ . Let T be a shift operator
on l2(Z+), i.e., acting on the basis in the following way:

Tek = ek+1.

Obviously, T ∗T = I, where T ∗ is the adjoint operator to the operator T , I is the identity operator and
TT ∗ = P is the projector on l2(Z+ \ {0}). Thus, a semigroup generated by the operators T and T ∗,
forms an inverse bicyclic semigroup. Each element of this semigroup has a form T nT ∗m, n,m ∈ Z+. We
will further call these elements monomials [4], and the number n − m an index of the monomial T nT ∗m

and denote ind(T nT ∗m). Finite linear combinations of monomials form an involutive subalgebra of the
algebra B(l2(Z+)) of all linear bounded operators of the Hilbert space l2(Z+). A uniform closure of this
subalgebra in B(l2(Z+)) is called the Toeplitz algebra and is denoted as T .

Let C(S1;T ) = C(S1) ⊗ T be a C∗-algebra of all continuous mappings from a unit circle S1 to the
algebra T with the norm

‖A‖ = sup
S1

‖A(eiθ)‖, A ∈ C(S1;T ).

Let Aθ0 ∈ C(S1;T ), Aθ0(e
iθ) = A(ei(θ+θ0)) be a shift operator on eiθ0 . Since ‖Aθ0‖ = ‖A‖, the shift

operator Aθ generates a representation

σ : S1 → Aut(C(S1;T )), σ(eiθ)(A) = Aθ.

Each element A from C(S1;T ) can be represented as a formal series

A(eiθ) 

∞
⊕

k=−∞
Ake

ikθ,

where

Ak =
1
2π

∫ 2π

0
σ(eiθ)(A)e−ikθdθ.
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12 LIPACHEVA, OVSEPYAN

By T̃ let us denote a C∗-subalgebra of the algebra C(S1) ⊗ T , generated by the monomials T̃ nT̃ ∗m,
T̃ nT̃ ∗m(eiθ) = eikθT nT ∗m, n,m ∈ Z+, where k = n − m. It is obvious that the algebra T̃ is also
invariant with respect to the shifts by the elements of the group S1, i.e., σ(eiθ)(A) ∈ T̃ for any A from
T̃ . In [5, 6] it is shown that the mapping Ã �→ A, A = Ã(1), generates an isomorphism between the
C∗-algebras T̃ and T . Analogous results for a more general case were obtained in [7]. Thus, the
representation σ : S1 → Aut(T̃ ) generates a representation σ0 : S1 → Aut(T ):

σ0(eiθ)(A) = Ã(eiθ),

where A = Ã(1). Note that σ0(eiθ)(T nT ∗m) = eikθT nT ∗m, n,m ∈ Z+, k = n −m. The notion of index
of monomial can be extended to the elements T̃ nT̃ ∗m of the algebra T̃ : ind(T̃ nT̃ ∗m) = n − m. By
construction of the algebra T̃ one can see that if Ã = T̃ nT̃ ∗m, B̃ = T̃ kT̃ ∗l, and n − m 
= k − l, then

1
2π

∫ 2π

0
Ã(eiθ)B̃∗(eiθ)dθ = 0.

Hence, the algebra T̃ can be written as

T̃ =
∞
⊕

k=−∞
L̃k,

where L̃k is a closed subspace in T̃ , generated by monomials of index k, i.e., consisting of those Ã ∈ T̃
such that

σ(eiθ)(A) = eikθA.

Thus,

T =
∞
⊕

k=−∞
Lk, (3.1)

where Lk is a closed subspace in T , generated by monomials of index k. Hence

Lk = {A ∈ T ; σ0(eiθ)(A) = eikθA}.
Each element A from T can be represented as a formal series

A 

∞∑

k=−∞
Ak, where Ak ∈ Lk.

Let B be a C∗-subalgebra of a unital C∗-algebra A. A positive linear mapping P : A → B is called a
conditional expectation, if it preserves the unit, P (b) = b for any b ∈ B and P (abc) = aP (b)c for any
a, c ∈ B, b ∈ A.

Let Tm be a C∗-subalgebra of the Toeplitz algebra T , generated by monomials of index m.

Theorem 1. For a C∗-algebra Tm the following relations are fulfilled:

a) Tm =
∞
⊕

k=−∞
Lkm,

b) there exists a conditional expectation Pm : T → Tm.

Proof. a) Obvious.
b) Let Gm be a finite subgroup of the group S1 of order m. Then

Gm = {z ∈ S1 : zm = 1} = {ei 2πk
m ; k = 0, . . . ,m − 1}.

If ind(T nT ∗l) = jm, j ∈ Z, then

σ0(ei 2πk
m )(T nT ∗l) = ei 2πkjm

m T nT ∗l = T nT ∗l.
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Hence

Tm = {A ∈ T : σ0(ei 2πk
m )(A) = A, k = 0, . . . ,m − 1}.

Define Pm : T → Tm, assuming

Pm(A) =
1
m

m−1∑

k=0

σ0(ei 2πk
m )(A).

One can verify that

σ0(ei 2πk
m )(Pm(A)) = Pm(A)

for all k = 0, 1, . . . ,m − 1 and A from T , and Pm(A) = A, if A is from Tm.

4. PROPERTIES OF THE ALGEBRA Tm

Let π : Z
∗
+ → T be an exact representation of the inverse semigroup Z

∗
+ as the Toeplitz algebra:

π(ana∗m) = T nT ∗m.

The following theorem is obvious.

Theorem 2. The restriction of the representation π to a subsemigroup Z
∗
+,m generates the

algebra Tm.

Let us define an endomorphism α : T → T :

α(A) = TAT ∗, A ∈ T .

The following diagram is commutative:

Z
∗
+

τ−−−−→ Z
∗
+

π

⏐⏐�
⏐⏐�π

T α−−−−→ T .

Indeed, π(τ(b)) = Tπ(b)T ∗ = α(π(b)), b ∈ Z+, that means that τ extends to the endomorphism α of
the Toeplitz algebra.

Denote by T (m) a C∗-subalgebra of the Toeplitz algebra generated by the semigroup π(Z∗
+(m)).

Obviously, T (m) ⊂ Tm.

Theorem 3. The C∗-algebra Tm as a vector space can be represented as a direct sum

Tm = T (m) ⊕ α(T (m)) ⊕ · · · ⊕ αm−1(T (m)).

Proof. From Lemma 1 and the fact that the algebra Tm is generated by the semigroup π(Z∗
+,m), it

follows that for any generating element V ∈ Tm it is true that V ∈ αl(T (m)) for some 0 ≤ l ≤ m − 1.
Let us show that αk(T (m)) ∩ αj(T (m)) = 0 for k 
= j. Let V ∈ αk(T (m)) ∩ αj(T (m)), then V =

αk(TmnT ∗ml) = αj(TmrT ∗ms). Hence, V = Tmn+kT ∗ml+k = Tmr+jT ∗ms+j , i.e., mn + k = mr + j
and ml + k = ms + j. Since 0 ≤ k ≤ m − 1 and 0 ≤ j ≤ m − 1, these equalities are possible only for
k = j, n = r, l = s. Hence the statement of the theorem follows from equality (3.1).

Corollary 1. The algebra Tm is a C∗-algebra generated by the operators Tm, T ∗m and the projectors
T lT ∗l, where 0 ≤ l ≤ m − 1.

Proof. By definition, the algebra Tm is generated by the elements V , whose indices are divisible
by m, i.e., V = Tmk+lT ∗mn+l, where k, n, l ∈ Z+, 0 ≤ l ≤ m − 1. Then V = TmkT lT ∗lT ∗mn =
(Tm)k(T lT ∗l)(T ∗m)n. This yields the statement of the corollary.
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14 LIPACHEVA, OVSEPYAN

Let us denote by Pl the projector T lT ∗l, 1 ≤ l ≤ m − 1. Obviously, PiPj = PjPi = Pj for 1 ≤ i ≤
j ≤ m − 1. This means that Pi > Pj , i < j. Thus, it is true that I = P0 > P1 > · · · > Pm−1.

Lemma 2. The following inclusion is true:

αk(T (m))αj(T (m)) ⊂ αk(T (m)) ⊕ αj(T (m)),

where 0 ≤ k, j ≤ m − 1.

Proof. Let V1 ∈ αk(T (m)) be an element of the form V1 = T nm+kT ∗ml+k, and V2 ∈ αjT (m) be an
element of the form V2 = T cm+jT ∗am+j . Then if cm + j > ml + k, then

V1V2 = T nm+kT ∗ml+kT cm+jT ∗am+j = T nm+k+cm+j−(ml+k)T ∗am+j

= T jTm(n+c−l)T ∗amT ∗j ∈ αj(T (m)), (4.1)

and if cm + j < ml + k, then

V1V2 = T nm+kT ∗(ml+k)T cm+jT ∗(am+j)

= T nm+kT ∗(−cm)−j+(ml+k)T ∗(am+j) = T kTmnT ∗m(l+a−c)T ∗k ∈ αk(T (m)). (4.2)

If cm + j = ml + k, then, in view of 0 ≤ k, j ≤ m − 1, we have j = k, c = l. Hence, V1, V2, V1V2 ∈
αk(T (m)). Thus, the statement of the lemma is true for monomials. In order to complete the
proof, we note that any element C ∈ αk(T (m))αj(T (m)) has the form of C = AB, where A is a
linear combination of the elements of the form V1, and B is a linear combination of the elements
of the form V2. Thus, AB is a linear combination of the elements of type (4.1) or (4.2). Thus,
AB ∈ αk(T (m)) ⊕ αj(T (m)).

Thus, the following theorem is true.

Theorem 4. If 0 ≤ i1 < i2 < · · · < ik ≤ m − 1, where ik ∈ Z+, then a direct sum of vector spaces

αi1(T (m)) ⊕ · · · ⊕ αik(T (m))

is a C∗-subalgebra in the algebra Tm.

5. REPRESENTATIONS OF THE ALGEBRA Tm

Let us represent a Hilbert space l2(Z+) with the basis {ek}k∈Z+ as a direct sum

l2(Z+) = H0 ⊕ H1 ⊕ · · · ⊕ Hm−1,

where the basis of the subspace Hi consists of {ei+km}k∈Z+ , 0 ≤ i ≤ m − 1.

Lemma 3. The subspaces Hi, 0 ≤ i ≤ m − 1, are invariant with respect to the algebra Tm.

Proof. Let A ∈ Tm, then A is a linear combination of the elements of the form V = T kT ∗l, where
ind(V ) = k − l is divisible by m, i.e., k − l = dm, d ∈ Z. Then for any Hi and ej ∈ Hi, if V ej 
= 0,
then V ej = ej+ind(V ) = ej+dm ∈ Hi. Thus, Aej ∈ Hi.

Theorem 5. The restriction of the C∗-algebra Tm to Hi, 0 ≤ i ≤ m − 1, generates m unitarily
nonequivalent irreducible infinite-dimensional representations.

RUSSIAN MATHEMATICS (IZ. VUZ) Vol. 59 No. 6 2015



THE STRUCTURE OF C∗-SUBALGEBRAS OF THE TOEPLITZ ALGEBRA 15

Proof. Consider the representation π : Tm → B
( m−1⊕

i=0
Hi

)
, π(A) = A, A ∈ Tm. By Lemma 3 all the

spaces Hi, 0 ≤ i ≤ m − 1, are invariant with respect to the algebra Tm, hence π(A) can be represented
as a direct sum

π(A) = π0(A) ⊕ π1(A) ⊕ · · · ⊕ πm−1(A),

where πi(A) = A|Hi for any A ∈ Tm, 0 ≤ i ≤ m − 1.
From Corollary 1 we have that the algebra Tm acts on each of the spaces Hi as the Toeplitz

algebra. Indeed, since Tm is generated by the operators Tm, T ∗m, T lT ∗l, 0 ≤ l ≤ m − 1, and
Tmei+mk = ei+m(k+1) for any k, and T ∗mei+mk = ei+m(k−1) for k 
= 0 and T ∗mei = 0, the operator Tm

is a shift operator on the basis {ei+km}k∈Z+ in the space Hi. This means that the representations πi,
0 ≤ i ≤ m − 1, are irreducible and the algebra Tm has m irreducible representations.

Let us show that the representations πi are unitarily nonequivalent. Suppose the contrary, among πi,
0 ≤ i ≤ m − 1, there are unitarily equivalent, i.e., there exist πi, πj , 0 ≤ i, j ≤ m − 1, and a unitary
operator U : Hj → Hi such that

Uπj(A) = πi(A)U

for any A ∈ Tm. Suppose i > j for definiteness. Suppose A = T iT ∗i. Then πi(A)U = (T iT ∗i)|Hi =
I|Hi , and πj(A) = (T iT ∗i)|Hj 
= I|Hj , since T iT ∗iej = 0. Hence, Uπj(A)ej = 0, and πi(A)Uej 
= 0.
We get a contradiction. Thus, the algebra Tm has m irreducible unitarily nonequivalent infinite-
dimensional representations.

Corollary 2. Let 0 ≤ i1 < i2 < · · · < ik ≤ m − 1, where ik ∈ Z+, then a C∗-subalgebra αi1(T (m)) ⊕
· · · ⊕ αik(T (m)) has k unitarily nonequivalent, irreducible, infinite-dimensional representations.

Lemma 4. Let π : Tm → B(H) be an irreducible representation of Tm on the Hilbert space H , then
the restriction π|T (m) : T (m) → B(H) is irreducible, too.

Proof. Suppose the contrary, let π|T (m) on H act reducibly, i.e., H = ⊕
i∈I

Hi ⊕H0, where π|T (m)(Hi) ⊂
Hi, i ∈ I or i = 0. The operator π(Tm) is an isometric operator, hence, by Wold–von Neumann
theorem [8], is a sum of shift operators and a unitary operator. Let π(Tm) on Hi, i ∈ I, act as a shift
operator, and on H0 as a unitary operator. Let us show that H0 = 0. Note that TmT ∗mPk = TmT ∗m,
k < m, where Pk = T kT ∗k is a projector. This yields π(TmT ∗m)π(Pk) = π(TmT ∗m). Since π(Tm)
on H0 acts as a unitary operator, π(TmT ∗m) = π(I) = 1 and, hence, π(Pk) = 1, k = 0, . . . ,m − 1. The
latter and π|T (m)(H0) ⊂ H0 yield that H0 is a proper invariant subspace for π, which contradicts the fact
that π is an irreducible representation of Tm, i.e., H0 = 0. Thus, H = ⊕

i∈I
Hi and the operator π(Tm) is a

shift operator on each Hi, i ∈ I. This means that H contains a nonempty set of initial elements.
Denote by L0 = {h ∈ H : π((Tm)∗)h = 0} a set of initial elements in H . Let k = dim(L0). If k = 1,

then π|T (m) is irreducible and the theorem is proved. Suppose the contrary, i.e., k > 1.

Let us show that the projectors P0 = I, Pi = T iT ∗i (i = 1, . . . ,m − 1) translate L0 into itself, i.e.,
π(Pi)(L0) ⊂ L0, i = 0, . . . ,m − 1. Indeed, let h ∈ L0, then π(TmT ∗m)π(Pi)h = π(TmT ∗m)h = 0 and
Pih ∈ L0, i = 0, 1, . . . ,m − 1. From a family of commuting projectors I = P0 > P1 > · · · > Pm−1,
let us construct a family of orthoprojectors Q0, Q1, . . . , Qm−1 in the following way: Qi = Pi − Pi+1,
i = 0, 1, . . . ,m − 2, and Qm−1 = Pm−1. Then the space L0 can be represented as a direct sum of
subspaces

L0 = E0 ⊕ E1 ⊕ · · · ⊕ Em−1,

where Ej = π(Qj)(L0), j = 0, . . . ,m − 1. Note that at least one of these subspaces is nonzero. Since
dim(L0) > 1, there exist x1, x2 ∈ L0 such that x1 ⊥ x2 x1, x2 belong to the same Ej or different Ei, Ej ,
i 
= j. Obviously, π(Qj)xl may be equal to either zero or xl, where l = 1, 2, j = 0, . . . ,m − 1. Since

Pi =
m−1∑
j=i

Qj , π(Pi)xl may also be equal to either zero or xl, where l = 1, 2, i = 0, . . . ,m − 1.

RUSSIAN MATHEMATICS (IZ. VUZ) Vol. 59 No. 6 2015



16 LIPACHEVA, OVSEPYAN

Consider the subspaces K1 = π(T (m))x1, K2 = π(T (m))x2. Obviously, K1 ∩ K2 = ∅. By the
above argument π(Pi)(K1) ⊂ K1, π(Pi)(K2) ⊂ K2 for i = 0, . . . ,m − 1. Thus by Corollary 1 we get
π(Tm)(K1) ⊂ K1, π(Tm)(K2) ⊂ K2, i.e., π is a reducible representation. A contradiction.

Since the algebra T (m) is isomorphic to the Toeplitz algebra T and is generated by a bicyclic
semigroup, it has one infinite-dimensional irreducible representation. A question, in a sense converse to
Lemma 4, arises: How can an irreducible representation of the algebra T (m) be extended to irreducible
representations of the algebra Tm and how many such representations exist? It turns out that the
following theorem is true.

Theorem 6. The C∗-algebra Tm has exactly m irreducible unitarily nonequivalent infinite-
dimensional representations.

Proof. Let π : T (m) → B(H) be an irreducible infinite-dimensional representation of the algebra
T (m). Let us extend the definition of the representation π to the representation of the algebra Tm. By
Corollary 1, we get that we need to extend the definition of π onto the projectors Pi, i = 1, . . . ,m − 1.
Then TmT ∗mPi = TmT ∗m, i = 1, . . . ,m − 1. This yields π(TmT ∗m)π(Pi) = π(TmT ∗m), i.e., π(Pi) ≥
π(TmT ∗m). Thus, either π(Pi)=π(TmT ∗m), or π(Pi)=I. Thus, due to the inequalities I > P1 > P2 >
· · · > Pm−1 we get m different representations of the algebra Tm:

1) π0(Tm) = π(Tm), π0(P1) = · · · = π0(Pm−1) = π(TmT ∗m),
2) π1(Tm) = π(Tm), π1(P1) = I, π1(P2) = · · · = π1(Pm−1) = π(TmT ∗m),
3) π2(Tm) = π(Tm), π2(P1) = π2(P2) = I, π2(P3) = · · · = π2(Pm−1) = π(TmT ∗m),

. . . . . .

m) πm−1(Tm) = π(Tm), πm−1(P1) = · · · = πm−1(Pm−1) = I.
All possible extensions of the representation π are exhausted by the representations constructed.
Note that the representations π0, π1, . . . , πm−1 are unitarily equivalent to the representations ob-

tained in Theorem 5. Indeed, consider a representation πk = π|Hk
for some k from Theorem 5. The

basis of the subspace Hk coincides with the set {ek+nm}n∈Z+ . Obviously, all the projectors πk(Pi),
1 ≤ i ≤ m − 1, preserve their basis elements, except for the initial element ek, πk(Pi)ek = ek for i ≤ k
and πk(Pi)ek = 0 for i > k. Thus, the following identities are true:

πk(P1) = · · · = πk(Pk) = I and πk(Pk+1) = · · · = πk(Pm−1) = π(TmT ∗m).

It follows from Theorem 5 that the representations π0, π1, . . . , πm−1 are irreducible and unitarily
nonequivalent.

6. REPRESENTATIONS OF THE SEMIGROUP Z
∗
+,m

In [1] it is proved that for the bicyclic semigroup Z
∗
+ there exist, up to unitary equivalence, one

infinite-dimensional irreducible representations and a series of one-dimensional unitary representations,
parameterized by a unit circle S1. Naturally, a question arises, how many irreducible representations
exist for its subsemigroup Z

∗
+,m? The following Theorem is true.

Theorem 7. The inverse semigroup Z
∗
+,m has, up to unitary equivalence, exactly m infinite-

dimensional irreducible representations and a series of one-dimensional unitarily non-equivalent
representations, parameterized by a unit circle S1.

In the proof of the first part of this Theorem we use the methods developed in the previous Sections
for the description of representations of the algebra Tm. In particular, the irreducible representation
Z
∗
+,m, restricted on Z

∗
+(m), turns out to be irreducible as well. Conversely, extending the definition of

the irreducible representation Z
∗
+(m) to the projectors P1, P2, . . . , Pm−1, one can construct exactly m

different irreducible representations of the semigroup Z
∗
+,m, like in the proof of Theorem 6. The second

part of the theorem follows from the next lemma.
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Lemma 5. Let J be a subsemigroup in Z
∗
+,m generated by the elements of zero index. The

homomorphism ind : Z
∗
+,m → Z generates a short exact sequence of semigroups

0 → J → Z
∗
+,m → Z → 0,

where id : J → Z
∗
+,m is an embedding.

The following theorem is analogous to a well-known theorem of L. Coburn [2] that any two
C∗-algebras generated by nonunitary isometric representations of the semigroup Z

∗
+ are canonically

isomorphic.

Theorem 8. Any two C∗-algebras generated by exact representations of the semigroup Z
∗
+,m are

canonically isomorphic.

Proof. Let π : Z
∗
+,m → B(H) be an exact representation of the semigroup Z

∗
+,m. Then by Theorem 7

π can be represented as

π =
m−1
⊕

k=0
πk ⊕

(
⊕

t∈Γ
τt

)
,

where πk, k = 0, 1, . . . ,m − 1, are all irreducible representations of the semigroup Z
∗
+,m, similar to

those described in Theorem 5 for the algebra Tm, and τt, t ∈ Γ, are one-dimensional representations
parameterized by the subset Γ of the unit circle S1. By Theorem 5 it follows that the algebras generated
by πk(Z∗

+,m), k = 0, 1, . . . ,m − 1, are isomorphic to the Toeplitz algebra.

Consider the representation πm−1 ⊕
(

⊕
t∈S1

τt

)
. Then by L. Coburn’s theorem [2] the algebra gen-

erated by this representations is canonically isomorphic to the algebra generated by the representation
πm−1. Thus the algebra, generated by the representation π is canonically isomorphic to the algebra

generated by the representation
m−1
⊕

k=0
πk. This yields the statement of the theorem.
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