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INTRODUCTION

Completely positive maps acting in operator algebras comprise a useful instrument in quantum
mechanics and quantum calculus theory study. Let A and B be some C�-algebras. A completely positive
map ϕ : A → B is a linear map such that [ϕ(aij)]ni,j=1 is a positive element of the C�-algebra Mn(B)
of n × n-square matrices with elements from B, for all positive matrices [(aij)]ni,j=1 in Mn(A), n ∈ N.
V. F. Stinespring in [1] proved that any completely positive map ϕ : A → L(H) acting from A into the
algebra L(H) of linear bounded operators in the Hilbert space H can be represented as ϕ(·) = S�π(·)S,
here π is a representation of the algebra A in the Hilbert space K and S is some linear bounded operator
mapping H into K. The structure of n-completely positive maps which we assume to be square n × n-
matrices whose elements are linear positive maps from the C�-algebra A into L(H) was studied in [2].

The Hilbert C�-modules are a generalization of both Hilbert spaces and C�-algebras. In [3] the
authors proved an analog of the Stinespring’s theorem for completely positive maps in Hilbert C�-
modules. Later the work [4] eliminated some technical restrictions. In [5] the problem was considered
from the viewpoint of the C�-correspondences theory. Papers [6, 7] contain covariant version of the
Stinespring’s theorem and noncommutative variant of the Radon–Nikodym theorem. In [8] the authors
proved an analog of the Stinespring’s theorem for Hilbert modules over local C�-algebras. Here we
prove one analog of the Stinespring’s theorem for n-tuples of completely positive maps acting in Hilbert
C�-modules.

1. PRELIMINARY CONSIDERATIONS

Let us give certain preliminary information necessary for our constructions. Our aim here is to fix the
terms and notation and to introduce the necessary notions. All the necessary properties of C�-algebras,
Hilbert C�-modules and completely positive maps can be found in [9–12].

1.1. We denote Hilbert spaces by H1, H2, K1, and K2. The inner products and norms generated
by these products relative to the spaces are denoted by 〈·, ·〉 and ‖ · ‖, respectively. We assume that
the inner products are linear on the second variable and skew-linear with respect to the first one. The
spaces of all linear bounded operators acting from H1 into H2 (H1) are denoted by L(H1,H2) and
L(H1) := L(H1,H1). We denote C�-algebras by A, B, etc.
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Recall that for the C�-algebra A an element x ∈ A is positive, if x = x� and σ(x) ⊂ R+, here σ(x)
is the spectrum of x.

We denote by Mn(A) the �-algebra of all matrices over the algebra A. Here the matrices addition
and multiplication and their multiplication by a basic field element are defined similarly to the case of the
ordinary scalar matrices. It is known that Mn(A) is also a C�-algebra ([10], theorem 3.4.2). A linear
map ϕ : A → B is completely positive if the linear map ϕn : Mn(A) → Mn(B) given by the formula
ϕn([aij ]ni,j=1) = [ϕ(aij)]ni,j=1 is positive for all n ∈ N.

Any square n × n-matrix of linear maps (ϕij)ni,j=1 from A to B can be considered as a linear map
[ϕ] : Mn(A) → Mn(B) of the matrix algebras given by the relation [ϕ]((aij)ni,j=1) = (ϕij(aij))ni,j=1. We
say that the matrix (ϕij)ni,j=1 is an n-completely positive mapping from A to B if [ϕ] is a completely
positive map from Mn(A) to Mn(B).

Let [ϕij ]ni,j=1 be an n-completely positive map from A to B. Denote by Dij the matrix whose all
elements are zero with the exception of one element situated at (i, j) and being equal d. Then we have
[ϕ](Dij)� = [ϕ](D�

ij). Hence

ϕij(d)� = ϕji(d�).

A pre-Hilbert A-module is a complex vector space V which is also a right A-module with a
sesquilinear form 〈·, ·〉 : V × V → A, meeting the following conditions:

(0.1) 〈x, x〉 ≥ 0 for all x ∈ V ;

(0.2) 〈x, y〉� = 〈y, x〉 for all x, y ∈ V ;

(0.3) 〈x, x〉 = 0 ⇔ x = 0 for all x ∈ V ;

(0.4) 〈x, ya〉 = 〈y, x〉a for all x, y ∈ V ; a ∈ A.

We say that V is a Hilbert A-C�-module or simply a C�-module if V is the Banach space with
respect to the norm

‖x‖ :=
√

〈x, x〉, x ∈ V.

A Hilbert C�-module V is complete if the two-sided closed ideal 〈V, V 〉A generated by {〈x, y〉A :
x, y ∈ V } coincides with A. Further we assume that all the considered Hilbert C�-modules are
complete. Note that the space L(H1,H2) is the Hilbert L(H1)-module for all Hilbert spaces H1, H2

with respect to the following operations:

(0.6) Exterior product (T, S) 
→ TS : L(H1,H2) × L(H1) → L(H1,H2);

(0.7) Inner product (T, S) 
→ T �S : L(H1,H2) × L(H1,H2) → L(H1).

A representation of the Hilbert C�-module V on the pair of Hilbert spaces H1 and H2 is a mapping
Ψ : V → L(H1,H2) such that there exists a �-representation π of the algebra A in the Hilbert space H1

and for all x, y ∈ V the relation 〈Ψ(x),Ψ(y)〉 = π(〈x, y〉) holds true. If the C�-modulus V is complete,
the representation π relative to Ψ is unique. A representation Ψ : V → L(H1,H2) is nondegenerate
if [Ψ(V )(H1)] = H2 and [Ψ(V )�(H2)] = H1 (here [Y ] is a closed subspace of the Hilbert space Z
generated by Y ⊂ Z). A linear map Φ : V → L(H1,H2) is a completely positive map of Hilbert C�-
modules if there exists a linear completely positive mapping of C�-algebras ϕ : A → L(H1) such that
〈Φ(x),Φ(y)〉 = ϕ(〈x, y〉) for all x, y ∈ V .

2. MAIN RESULT

Consider the Hilbert C�-module V over some C�-algebra A and let H1 and H2 be Hilbert spaces.
Let Φi, i ∈ {1, . . . , n}, be certain mappings Φi : V → L(H1,H2).

A set of n-maps Φ = (Φ1, . . . ,Φn) is completely positive if there exists a n-completely positive map
[ϕ] from A to L(H1) such that [〈Φi(x),Φj(y)〉]ni,j=1 = [ϕij〈x, y〉]ni,j=1 for all x, y ∈ V . Let us formulate
the main result.
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38 PLIEV, TSOPANOV

Theorem 2.1. Let A be a unital C�-algebra, V be a Hilbert C�-module, [ϕij ]ni,j=1 : A → L(H1) be
some n-completely positive map and Φ = (Φ1, . . . ,Φn), Φi : V → L(H1,H2), i ∈ {1, . . . , n} stand
for [ϕ]-completely positive n-tuple. Then there exists the following data set: (π, S1, . . . , Sn,K1),
(Ψ,W1, . . . ,Wn,K2), here

(1) K1 and K2 are Hilbert spaces;
(2) Ψ : V → L(K1,K2) is a representation of V in the Hilbert spaces K1 and K2, π : A → L(K1)

is a �-homomorphism, associated with Ψ, Si : H1 → K1 are isometric linear operators, Wi : H2 →
K2 are coisometric linear operators for any i ∈ {1, . . . , n} such that

ϕij(a) = S�
i πA(a)Sj for any a ∈ A; i, j ∈ {1, . . . , n},

and

Φi(x) = W �
i Ψ(x)Si for any x ∈ V and every i ∈ {1, . . . , n}.

Proof. Let us show the existence of π, K1 and S1, . . . , Sn. Denote by (A ⊗ H1)n the direct sum of
n-copies of the algebraic tensor product A ⊗ H1. Note that any element of the vector space (A ⊗ H1)n
can be written as follows:

( m1∑

s=1

a1s ⊗ ξ1s, . . . ,

mn∑

s=1

ans ⊗ ξns

)
and m = max{m1, . . . ,mn}.

Completion of these sums with zeros makes it possible to state that any element of (A ⊗ H1)n can be

represented as
m∑

s=1
(ais ⊗ ξis)ni=1. Consider now the map 〈·, ·〉0 : (A ⊗ H1)n × (A ⊗ H1)n → C given by

the formula

〈 m∑

s=1

(ais ⊗ ξis)ni=1,
l∑

t=1

(bjt ⊗ ηjt)nj=1

〉

0
=

m,l∑

s,t=1

n∑

i,j=1

〈ξis, ϕij(a�
isbjt)ηjt〉

on the vector space (A ⊗ H1)n.

This mapping is C-linear with respect to the second variable and skew-linear by the first one.
Moreover we have the equality

(〈 m∑

s=1

(ais ⊗ ξis)ni=1,

l∑

t=1

(bjt ⊗ ηjt)nj=1

〉

0

)�

=
m,l∑

s,t=1

n∑

i,j=1

(
〈ξis, ϕij(a�

isbjt)ηjt〉
)�

=
m,l∑

s,t=1

n∑

i,j=1

〈ηjt, (ϕij(a�
isbjt))�ξis〉 =

〈 l∑

t=1

(bjt ⊗ ηjt)nj=1,

m∑

s=1

(ais ⊗ ξis)ni=1

〉

0

for all (ais ⊗ ξis)ni=1, (bjt ⊗ ηjt)nj=1 ∈ (A ⊗ H1)n. Finally we have one more important property of the
map 〈·, ·〉0 which allows us to define an inner product on the appropriate factor-space (A ⊗ H1)n by the
relation

〈 m∑

s=1

(ais ⊗ ξis)ni=1,

m∑

s=1

(ais ⊗ ξis)ni=1

〉

0
≥ 0.

Nonnegativity of this relation is provided due to complete positivity of [ϕ] acting from Mn(A) to
Mn(L(H1)). Put

M := {ζ ∈ (A ⊗ H1)n : 〈ζ, ζ〉0 = 0}.
Now the Cauchy–Schwartz inequality implies that M is a subspace of (A⊗H1)n. Then it is possible to
define the scalar product 〈ζ1 + M, ζ2 + M〉 := 〈ζ1, ζ2〉0 on the factor-space (A ⊗ H1)n/M . We denote
the completion of (A⊗H1)n/M with respect to the norm given by this inner product by K1. Also denote
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by ξi the element of (A ⊗ H1)n whose ith component equals 1 ⊗ ξ and all the other components vanish.
We now define the maps Si : H1 → K1 by the formula

Si(ξ) = ξi + M.

Denote by ξa,i an element of the space (A ⊗ H1)n/M such that its ith component is a ⊗ ξ and all the
other components vanish. Let a ∈ A. Consider the linear map π(a) : (A ⊗ H1)n → (A ⊗ H1)n given by
the relation π(a)(ai ⊗ ξi)ni=1 = (aai ⊗ ξi)ni=1. The operator π(a) can be extended by continuity to linear
map from K1 to K1. We keep the notation π(a) for this extension. We prove that π(a) is a representation
of the algebra A in the Hilbert space K1 by the scheme similar to that of theorem 3.3.2 in [13]. Direct
calculation shows us that π(ai)Siξi = ξi,a + M . Thus the subspace K1 generated by elements π(ai)Siξi,
i ∈ {1, . . . , n}, ξi ∈ H1, ai ∈ A is exactly (A ⊗ H1)n/M .

Consider the space K2 := [{Ψi(V )(H1)}], i = 1, . . . , n. The operator Ψ : V → L(K1,K2) can be
given by the formula

Ψ(x)
( m∑

s=1

π(a1s)S1ξ1s, . . . ,

m∑

s=1

π(ans)Snξns

)

:=
m∑

s=1

Φ1(xa1s)ξ1s + · · · +
m∑

s=1

Φn(xans)ξns =
n∑

i=1

m∑

s=1

Φi(xais)ξis,

here x ∈ V , ais ∈ A, ξis ∈ H1, 1 ≤ s ≤ m, m ∈ N. Let us prove that the linear map Ψ(x) is bounded.
Indeed we have the relations

∥
∥∥
∥Ψ(x)

( m∑

s=1

π(a1s)S1ξ1s, . . . ,

m∑

s=1

π(ans)Snξns

)∥
∥∥
∥

2

=
∥
∥∥
∥

m∑

s=1

Φ1(xa1s)ξ1s + · · · +
m∑

s=1

Φn(xans)ξns

∥
∥∥
∥

2

=
〈 m∑

s=1

n∑

i=1

Φi(xais)ξis,
m∑

r=1

n∑

j=1

Φj(xajr)ξjr

〉
=

m∑

s,r=1

n∑

i,j=1

〈ξis,Φi(xais)�Φj(xajr)ξjr〉

=
m∑

s,r=1

n∑

i,j=1

〈ξis, ϕij(〈xais, xajr〉)ξjr〉 =
m∑

s,r=1

n∑

i,j=1

〈ξis, S
�
i π(a�

is〈x, x〉ajr)Sjξjr〉

=
m∑

s,r=1

n∑

i,j=1

〈π(ais)Si(ξis), π(〈x, x〉)π(ajr)Sjξjr〉

=
〈 m∑

s=1

n∑

i=1

π(ais)Si(ξis), π(〈x, x〉)
( m∑

r=1

n∑

j=1

π(ajr)Sjξjr

)〉

≤
∥∥π(〈x, x〉)

∥∥
∥
∥∥
∥

( m∑

r=1

n∑

i=1

π(ai,r)Siξi,r

)∥
∥∥
∥

2

≤ ‖x‖2

∥
∥∥
∥

( m∑

r=1

n∑

i=1

π(ai,r)Siξi,r

)∥
∥∥
∥

2

.

Hence the operator Ψ(x) is bounded on the dense subspace and consequently can be extended to the
whole space K1. Again we keep the notation for the extended operator. Let us now show that the
mapping Ψ is a representation of Hilbert C�-modules. Consider x, y ∈ V ; ais, bjr ∈ A; ξis, ηjr ∈ H1;
1 ≤ i, j ≤ n; 1 ≤ s ≤ l, 1 ≤ r ≤ m; n,m ∈ N. Then the following holds:

〈
Ψ(x)�Ψ(y)

( m∑

r=1

n∑

j=1

π(bj,r)Sjηj,r

)
,

l∑

s=1

n∑

i=1

π(ai,s)Siξi,s

〉

=
〈 m∑

r=1

n∑

j=1

Φj(ybjr)ηjr,

l∑

s=1

n∑

i=1

Φi(xais)ξis

〉
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=
l∑

s=1

m∑

r=1

n∑

i,j=1

〈Φi(xais)�Φj(ybjr)ηjr, ξis〉 =
l∑

s=1

m∑

r=1

n∑

i,j=1

〈ϕij(〈xais, ybjr〉)ηjr, ξis〉

=
l∑

s=1

m∑

r=1

n∑

i,j=1

〈S�
i π(a�

is〈x, y〉ajr)Sjηjr, ξis〉

=
〈
π(〈x, y〉)

( m∑

r=1

n∑

j=1

π(bj,r)Sjηj,r

)
,

l∑

s=1

n∑

i=1

π(ai,s)Siξi,s

〉
.

Thus the equality Ψ(x)�Ψ(y) = 〈Ψ(x),Ψ(y)〉 = π(〈x, y〉) holds true on the dense set. Hence by
continuity the operators 〈Ψ(x),Ψ(y)〉 and π(〈x, y〉) coincide on the whole space K1. Note that K2 ⊂ H2.
Let us denote the closed subspace [Φi(V )(H1)] of H2 by K2i. Let Wi := PK2i , i ∈ {1, . . . , n} be
the orthogonal projection onto the space K2i. Then the operator W �

i : K2i → H2 is an inclusion
operator. Hence WiW

�
i = IK2i for any i ∈ {1, . . . , n}. Now for all x ∈ V and ξ ∈ H1 we have Φi(x)(ξ) =

W �
i Ψ(x)Si(ξ), i ∈ {1, . . . , n}.

Let [ϕ] and Φ meet the assumptions of Theorem 2.1. We say that the data set (π, S1, . . . , Sn,K1),
(Ψ,W1, . . . ,Wn,K2) is a Stinespring representation for (ϕ,Φ) if conditions (1)–(2) of Theorem 2.1
hold. We denote by K2i (K ′

2i), i ∈ {1, . . . , n} the closed subspaces [Ψ(V )Si(H1)] ([Ψ′(V )S′
i(H1)]). This

representation is minimal if

1) K1 = [{π(A)Si(H1) : i = 1, . . . , n}],
2) K2 = [{Ψ(V )Si(H1) : i = 1, . . . , n}].

Theorem 2.2. Let [ϕ] and Φ be similar to those in Theorem 2.1. Assume that (π, S1, . . . , Sn,K1),
(Ψ,W1, . . . ,Wn,K2) and (π′, S′

1, . . . , S
′
n K ′

1), (Ψ′,W ′
1, . . . ,W

′
n,K2) are minimal Stinespring repre-

sentations. Then there exist unitary operators U1 : K1 → K ′
1, U2 : K2 → K ′

2 such that

(1) U1Si = S′
i ∀i ∈ {1, . . . , n}; U1π(a) = π′(a)U1 ∀a ∈ A.

(2) U2Wi = W ′
i ∀i ∈ {1, . . . , n}; U2Ψ(x) = Ψ′(x)U1 ∀x ∈ V .

The diagram is commutative

H1
Si−−−−→ K1

π(a)−−−−→ K1
Ψ(x)−−−−→ K2

Wi←−−−− H2
⏐⏐
Id

⏐⏐
U1

⏐⏐
U1

⏐⏐
U2

⏐⏐
Id

H1
S′

i−−−−→ K ′
1

π′(a)−−−−→ K ′
1

Ψ′(x)−−−−→ K ′
2

W ′
i←−−−− H2

for all a ∈ A, x ∈ V , i ∈ {1, . . . , n}.

Proof. Let us prove existence of the unitary operator U1 : K1 → K ′
1. First define U1 on the dense linear

subset generated by the set {π(A)Si(H1); i = 1, . . . , n}:

U1

( m∑

s=1

n∑

i=1

π(ais)Si(ξis)
)

:=
( m∑

s=1

n∑

i=1

π′(ais)S′
i(ξis)

)
,

here ais ∈ A, ξis ∈ H1, m ∈ N. Direct computation shows that the operator U1 is an isometry. We
denote the extension of the operator U1 by continuity onto the space K1 by the same symbol. Then U1 is
a unitary operator meeting condition (1). Let us now define the operator U2 on the dense subset (linear
space) generated by the set {Ψ(V )Si(H1) : i = 1, . . . , n}:

U2

( m∑

s=1

Ψ(x1s)S1ξ1s + · · · +
m∑

s=1

Ψ(xns)Snξns

)
:=

m∑

s=1

Ψ′(x1s)S′
1ξ1s + · · · +

m∑

s=1

Ψ′(xns)S′
nξns,
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here xis ∈ V , ξis ∈ H1, m ∈ N. Since the operators Si, S
′
i are isometries for any i ∈ {1, . . . , n}, we have

U2

( m∑

s=1

Ψ(xis)Siξns

)
=

m∑

s=1

Ψ′(xis)S′
iξns,

and, consequently, U2(K2i) = K ′
2i. It is possible now to write down the following:

∥∥
∥∥

( m∑

s=1

Ψ′(x1s)S′
1ξ1s + · · · +

m∑

s=1

Ψ′(xns)S′
nξns

)∥∥
∥∥

2

=
〈 n∑

i=1

m∑

s=1

Ψ′(xis)S′
iξis,

n∑

j=1

m∑

r=1

Ψ′(xjr)S′
jξjr

〉
=

m∑

s,r=1

n∑

i,j=1

〈Ψ′(xis)S′
iξis,Ψ′(xjr)S′

jξjr〉

=
m∑

s,r=1

n∑

i,j=1

〈ξis, S
′�
i π′(〈xis, xjr〉)S′

j(ξjr)〉
m∑

s,r=1

n∑

i,j=1

〈ξis, ϕij(〈xais, xajr〉)(ξjr)〉

=
m∑

s,r=1

n∑

i,j=1

〈ξis, S
�
i π(〈xis, xjr〉)Sj(ξjr)〉

m∑

s,r=1

n∑

i,j=1

〈Ψ(xis)Siξis,Ψ(xjr)Sjξjr〉

=
〈 n∑

i=1

m∑

s=1

Ψ(xis)Siξis,

n∑

j=1

m∑

r=1

Ψ(xjr)Sjξjr

〉

=
∥∥
∥∥

m∑

s=1

Ψ(x1s)S1ξ1s + · · · +
m∑

s=1

Ψ(xns)Snξns

∥∥
∥∥

2

.

Hence U2 is an isometry and the operator U2 can be extended to the whole space K2. We again keep
the notation for the extended operator. The operator U2 is unitary. Note that (π, S1, . . . , Sn,K1),
(Ψ,W1, . . . ,Wn,K2) (π′, S′

1, . . . , S
′
nK ′

1), (Ψ′,W ′
1, . . . ,W

′
n,K2) are Stinespring representations for

([ϕ],Φ). Hence for any i ∈ {1, . . . , n} we have

Φi(x) = W �
i Ψ(x)Si = W ′�

i Ψ′(x)S′
i = W ′�

i U2Ψ(x)Si.

So

(W �
i − W ′�

i U2)Ψ(x)Si = 0 ⇒ (W �
i − W ′�

i U2)Ψ(x)Si(ξ) = 0 ∀x ∈ V, ξ ∈ H1, i ∈ {1, . . . , n}.

Thus U2Wi = W ′
i for any i ∈ {1, . . . , n}. Finally we prove that U2Ψ(x) = Ψ′(x)U1 on the dense

subspace
{ m∑

s=1

n∑

i=1

π(ais)Si(ξis); ais ∈ A, ξis ∈ H1, m ∈ N

}
.

Recall that any representation Ψ : V → L(K1,K2) of Hilbert C�-modules is A-linear in the following
sense: Ψ(xa) = Ψ(x)π(a) for all x ∈ V and a ∈ A. Since Ψ and Ψ′ are representations of the Hilbert
C�-modules associated with π and π′, respectively, we obtain

U2Ψ(x)
( m∑

s=1

n∑

i=1

π(ais)Si(ξis)
)

= U2

( m∑

s=1

n∑

i=1

Ψ(xais)Siξis

)

=
m∑

s=1

n∑

i=1

Ψ′(xais)S′
iξis = Ψ′(x)

( m∑

s=1

n∑

i=1

π′(ais)S′
i(ξis)

)
= Ψ′(x)U1

( m∑

s=1

n∑

i=1

π(ais)Si(ξis)
)

.

Thus by continuity the equality U2Ψ(x) = Ψ′(x)U1 holds on all the space K1.
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