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The algebraic structures automorphisms relationship with the sets of their fixed points is related to a
traditional algebraic subjects whose origin can be traced to the classical Galois theory which establishes
the correspondence between subgroups of the Galois fields automorphisms groups and fixed points
subfields of these automorphisms. In somewhat more general setting of the universal algebras the
similar study was presented in the B. I. Plotkin monograph [1]. Nevertheless, later the universal algebras
specialists concentrated more on the Galois-correspondence between clones of the relations on the fixed
set and functions clones which do not change these relations (see, e.g., [2]). Here we consider the
Galois-correspondence between the universal algebra A subgroups of the automorphism group Aut A

and the fixed points automorphism subalgebras from these groups in the classical Galois theory setting.
Let us denote by SubA a lattice of subalgebras of some universal algebra A = 〈A;σ〉. For any

f ∈ AutA we say that Fix f is the set {a ∈ A | f(a) = a} of all fixed points for the automorphism f ,
and Fix G =

⋂

f∈G

Fix f is the set of all fixed points for all automorphisms from the subgroup G of the

group AutA. Clearly, for any f ∈ AutA and any subgroup G of the group Aut A the sets Fix f and
Fix G are subalgebras of the algebra A. We denote by StabB the set of functions f ∈ AutA such that
B ⊆ Fix f for any subalgebra B of the algebra A. Again it seems clear that Stab B is the subgroup of
the group AutA. Thus we have the Galois mappings (analogs of the relative mapping from the classical
Galois theory for the fields):

Stab : SubA → SubAut A,

Fix : SubAutA → SubA.

Let us consider the operation of Galois-closure corresponding to these mappings on the lattice
SubA of the algebra A subalgebras: We put in correspondence to any subalgebra B of the algebra A

the closure of this subalgebra B = Fix Stab B. The definition of subalgebra B implies that for any
automorphisms f and g of the algebra A the equality f�B=g�B yields the equality f�B=g�B. Here
f � B is the restriction of the function f to subalgebra B. Particularly, the identity of automorphism f

for A on its subalgebra B implies this automorphism identity also on B.
Note the principal properties of the Galois-closure operation (these properties are implicit conse-

quences of definition of the operation):

1) B ⊆ B,

2) B = B,

3) B1 ⊆ B2 → B1 ⊆ B2.
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The latter property, in particular, implies the following inclusions: B1 ∨ B2 ⊆ B1 ∨ B2 and
B1 ∧ B2 ⊆ B1 ∧ B2, here the symbols ∧ and ∨ denote inf and sup in the lattice SubA, respectively.
Note that at the same time the relations ⊆ here cannot be replaced by the equality relations.

Indeed, let us consider the algebra A = 〈A;σ〉 of the signature σ which consists of one one-place
function f . Put A = {01, 11, 02, 12, 03, 13} and f(0i) = 1i, f(1i) = 1i for any i ∈ {1, 2, 3}. Then B1 =
{01, 11}, B2 = {02, 12} are subalgebras of the algebra A and it seems clear that B1 = B1, B2 = B2.
At the same time B1 ∨ B2 = A. Assume also that C1 = {01, 11, 03, 13}, C2 = {02, 12, 03, 13}. Again
it seems clear that C1 = A, C2 = A, but C1 ∧ C2 = {03, 13}, so in this case B1 ∨ B2 	= B1 ∨ B2 and
C1 ∧ C2 	= C1 ∧ C2.

We say that a subalgebra B of the algebra A is Galois-closed if B = B.
Note that the set-theoretical intersection of any number of Galois-closed subalgebras of the alge-

bra A is again a Galois-closed subalgebra from A. Thus the set of Galois-closed subalgebras of the
algebra A is a complete lattice with respect to the set-theoretical inclusion relation.

The example similar to the given above allows us to state that Galois-closure is not a local notion,
i.e., Galois-closure of a subalgebra may not coincide with Galois-closures union of its finitely generated
subalgebras. Assume again that the signature σ is still a one-place function f . Put A = {0i, 1i | i ∈
ω} ∪ {0ω, 1ω} and at the same time put f(0i) = 1i, f(1i) = 1i for i ∈ ω and f(0ω) = 1ω, f(1ω) = 1ω .
Let B = {0i, 1i | i ∈ ω} and Bj (j ∈ J) be the set of all finitely generated subalgebras of the algebra B.
Since there exists n ∈ ω such that Bj ⊆ {0i, 1i | i � n} for any j ∈ J , it can be immediately noted that
also Bj ⊆ {0i, 1i | i � n}. Thus

⋃

j∈J

Bj = B but B = A, so the Galois-closure of the subalgebra B

does not coincide with Galois-closures union of finitely generated subalgebras of algebra B.

Let us describe in detain the elements of the Galois-closure B for subalgebra B of the arbitrary
universal algebra A. It is possible to obtain a complete description in the case of no more than countable
algebra A of no more than countable signature. In the general case the problem remain open.

We denote by σB the signature σ extension by addition to this signature new constants cb for b ∈ B,
and by AB the corresponding algebra A extension to signature σB by interpretation of the constant cb

(b ∈ B) by element b for any algebra A = 〈A;σ〉 and any subset B ⊆ A.
The definition of computation formulas Lω1ω can be found, for example, in [3, 4]. Traditionally we say

that the basic formulas are logical formulas of the first order (Lωω).
Again we treat the quantification ∃!x in common sense (“there exists a unique x”) by assuming that

∃!x ϕ(x) ⇔ ∃x ϕ(x)& ∀x, y (ϕ(x)& ϕ(y) → x = y).

Here ϕ(x) is either a basic or Lω1,ω-formula according to the context. The ∃!-basic ( ∃!-Lω1ω-) formula
ϕ(x) for the algebra A = 〈A;σ〉 is any (Lω1ω-) basic formula of signature σ such that A |= ∃!xϕ(x).

Now the description of elements of the arbitrary finite or countable universal algebra subalgebras of
no more than countable signature Galois-closures allows us to state the following result.

Theorem. a) For any finite universal algebra A = 〈A;σ〉 and any its subalgebra B = 〈B;σ〉 the
element d of A belongs to B if and only if AB |= ϕ(d) for some ∃!-basic formula ϕ(x) for the
algebra AB of signature σB .

b) For any no more than countable universal algebra A = 〈A;σ〉 of no more than countable
signature and any of its subalgebras B = 〈B;σ〉 the element d of A belongs to B if and only if
AB |= ϕ(d) for some ∃!-Lω1ω-formula ϕ(x) for the algebra AB of signature σB.

Proof. First note that if the element d ∈ A can be uniquely defined in AB by some Lω1,ω -formula then
any automorphism of the algebra A fixing an element of B also does not shift d. Thus we obtain the
sufficiency part of the theorem for items a) and b).

Let us now turn to the necessity part of the theorem. Consider two cases: d ∈ B and d ∈ A \ B. In
the first case the formula ϕ(x) part is given to the relation x = cd. We confine ourselves only to the case
d ∈ A \ B.
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a) It is well-known that there exists a basic formula ϕA of signature σ for any finite algebra A = 〈A;σ〉
of the finite signature σ such that for any algebra C = 〈C;σ〉 the formula ϕA turns to be true on C if and
only if C is isomorphic to A. Let now A = 〈A;σ〉 be any finite algebra of the arbitrary (not necessarily
finite) signature σ. Fix now a finite signature σ′ ⊆ σ. Let us denote by Aσ′

the simplification of the
algebra A to the algebra of signature σ′. So we are able to state that g is an isomorphism of Aσ′

C onto
Dg(C) if and only if Dg(C) |= ϕ

Aσ′
C

for any C ⊆ A, any finite signature σ′ ⊆ σ and any bijection g of the

set A to the basic set D of the algebra D = 〈D;σ′〉.
Let B = 〈B;σ〉 be an arbitrary subalgebra of the algebra A and d ∈ B. We denote by ϕσ′

(x) the
formula which is the formula ϕ

Aσ′
B∪{d}

with the constant cd replaced by the variable x. Since d ∈ B,

any automorphism of the algebra A fixing elements of B also does not shift d. Then, since the
formula ϕ

Aσ′
B∪{d}

describes the algebra Aσ′
B∪{d} up to isomorphism and the bijection set of A (a set of

automorphisms of potential algebra) is finite, we can find a finite signature σ′ ⊆ σ such that the formula
ϕσ′

(x) is ∃!-basic for algebra AB and we have AB |= ϕσ′
(d). This completes the proof of item a).

b) By D. Scott theorem [5] there exists Lω1ω-formula ϕA such that for any no more than countable
algebra C of signature σ the formula ϕA validity is equivalent to isomorphism of A and C for any no
more than countable algebra A = 〈A;σ〉 of no more than countable signature. Let B = 〈B;σ〉 be a
subalgebra of no more than countable algebra A = 〈A;σ〉 of no more than countable signature σ and
d ∈ B. As ϕ(x) we fix the formula deduced from the formula ϕAB∪{d} by replacing the constant cd with

the variable x. Again by D. Scott theorem, the inclusion d ∈ B and notions similar to given in the
proof of item a) the formula ϕ(x) is a ∃!-Lω1ω-formula for algebra AB , and at the same time AB |= ϕ(d).
Indeed, if we have AB |= ϕ(f) for some f ∈ A \B, then there exists an automorphism ψ of the algebra A

which fixes elements of B and such that ψ(d) = f . Since d ∈ B, we have d = f .

It seems interesting to compare item a) of Theorem 1 with Poschel–Kaluznin theorem [6]. This
theorem describes relations which belong to the relation clone generated by an arbitrary relation system
on some finite set as relations defined by ∃-basic formulas of signature consisting of the relations of the
initial system.

We call a subalgebra B = 〈B;σ〉 of the algebra A the ∃!-elementary (∃!-Lω1ω-) subalgebra of the
algebra A if for any ∃!-basic (∃!-Lω1ω-) for the algebra AB formula ϕ(x) of signature σB and any element
d from A such that AB |= ϕ(d) the inclusion d ∈ B holds.

Corollary 1. a) For any finite universal algebra A = 〈A;σ〉 its subalgebra B = 〈B;σ〉 is Galois-closed
if and only if B is an ∃!-basic subalgebra of the algebra AB .

b) For any no more than countable universal algebra A = 〈A;σ〉 of no more than countable sig-
nature σ its subalgebra B = 〈B;σ〉 is Galois-closed if and only if B is an ∃!-Lω1ω-subalgebra of the
algebra AB .

In dual way the mappings Stab : SubA → SubAut A and Fix : SubAutA → SubA define the op-

eration of A-closure on the subgroups lattice SubAutA of the group Aut A. We denote by G
A

the group
Stab Fix G consisting of automorphisms f of the algebra A such that Fix f ⊇

⋂

g∈G
Fix g for any subgroup

G of the group Aut A. Thus the mappings Stab : SubA → SubAutA and Fix : SubAutA → SubA

define mutually-inverse (dual) mappings between partially ordered (complete lattices) sets CSubAutA
of A-closed subgroups of the group Aut A and GSubA Galois-closed subalgebras of the algebras A (or,
due to Corollary 1, similarly ∃!-basic subalgebras of the finite algebras A and ∃!-Lω1ω-subalgebras of the
countable algebras A of no more than countable signature, respectively). This duality in itself is exactly
the generalization of the classical Galois duality between subfields of separable normal extensions K of
the arbitrary fields k and subgroups of groups of k-automorphisms of fields K for the case of arbitrary
universal algebras. Note also that normal A-closed subgroups of the group AutA naturally correspond
to the fixed Galois-closed subalgebras B of the algebra A, i.e., algebras such that for any g ∈ AutA we
have g(B) = B.
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The element d of the algebra A = 〈A;σ〉 is separable from the subalgebra B = 〈B;σ〉 if d

does not belong to the Galois-closure of the algebra (d 	∈ B). In other words, if there exist some
automorphisms g1 and g2 of the algebra A coinciding on B and such that g1(d) 	= g2(d) or in one more
equivalent formulation, if there exists f ∈ AutA such that f is an identity on B but f(d) 	= d. The latter
automorphism f is the separating automorphism of d from B. We also call the algebra A separable if
all its subalgebras are Galois-closed, i.e., if any its element is separable from any of its subalgebra which
does not contain this element. Clearly this separable universal algebras notion is related and similar to
the same notion in the field theory (see, e.g., [7]).

Let us show for instance that any finite Boolean algebra B = 〈B;∧,∨,¬, 0, 1〉 is separable. Let
C = 〈C;∧,∨,¬, 0, 1〉 be a proper subalgebra of the algebra B and d ∈ B \ C. Let {b1, . . . , bn} be all
atoms of the algebra B, and {c1, . . . , cm} be all atoms of the algebra C. Let us prove the existence of an
automorphism f of the algebra B such that f is identical on C and f(d) 	= d. Since d ∈ B \ C, there
exists i � m such that ci ∧ d 	= 0 and ci ∧ ¬d 	= 0. Conversely, d is a union of ci, i.e., it belongs to C.
Since b1, . . . , bn is the set of all atoms of B, there exist i1 	= i2 such that bi1 � ci ∧ d and bi2 � ci ∧ ¬d.
Let f ∈ Aut B be induced by equalities f(bj) = bj for j /∈ {i1, i2}, f(bi1) = bi2 , f(bi2) = bi1 . It seems
clear then that f is identical on C and f(d) 	= d.

Assume now that B = 〈B;∧,∨,¬, 0, 1〉 is an infinite Boolean algebra which is not non-atomic. Let
us show that in this situation B is not separable. Let us consider the following two cases: a) B contains
only finite number of atoms: a0, . . . , an, b) B contains an infinite set of atoms: a0, . . . , an, . . . .

a) Put a = a1 ∨ · · · ∨ an. Then a is fixed under any Boolean algebra automorphism and, consequently,
a belongs to the Galois-closure of any subalgebra. Thus a 	∈ C and a ∈ C for C = 〈{0, 1};∧,∨,¬, 0, 1〉,
so B is not separable.

b) Let C be a collection of all finite atom disjunctions of B different from a0 and the complements of
the similar elements. Then a0 does not belong to the subalgebra C = 〈C;∧,∨.¬, 0, 1〉 of the algebra B.
Let f be an automorphism of the algebra B identical on the subalgebra C and consequently on all atoms
of the algebra B different from a0. Then this automorphism is identical also on a0. Hence a0 ∈ C and
the algebra B is not separable.

Finally, let us show that any non-atomic Boolean algebra is also non-separable. Recall that a
subalgebra C of the Boolean algebra B is dense in B if there exists c ∈ C \ {0} such that c � b for
any b ∈ B \ {0}. The subset D of the Boolean algebra B is said to be nonredundant if for any
d ∈ D the element d does not belong to the subalgebra generated by the set D \ {d}. According to
R. McCansy ([8], statement 4.23) any maximal with respect to inclusion nonredundant subset of the
Boolean algebra B generates some dense in B subalgebra. So let B be some non-atomic Boolean
algebra and D be some its maximal nonredundant subset with respect to inclusion. Hence there
exists a dense in B subalgebra 〈D〉B generated by the set D. Fix an arbitrary element d ∈ D, then
d /∈ 〈D \ {d}〉B and nonatomicity of B implies that 〈D \ {d}〉B is still dense in B. Thus, C = 〈D \ {d}〉B
is a proper dense subalgebra of the algebra B. It can be shown by direct computation that if f ∈ AutB

is identical on the dense in B subalgebra, then f is also identical on B. Thus we arrive to the following
statement.

Statement. A Boolean algebra is separable if and only if it is finite.

Let us also note similar questions on Fix-definable automorphisms and automorphic definable
subalgebras of the universal algebras (the questions posed for Boolean algebras by S. S. Goncharov
and solved by D. E. Pal’chunov and A. V. Trofimov [9]). The automorphism g of the universal algebra A

is said to be Fix-definable if for any f ∈ AutA the equality Fix f = Fix g implies the equality f = g.
Due to relation Fix f−1 = Fix f any Fix-definable automorphism of algebra A is the involution of this
algebra (second order automorphism). In [9] the authors prove that for Boolean algebras the converse
also holds true: Any Boolean algebra involution is Fix-definable. Similar result was found also for the
case of the distributive nets (for the finite latices by the author and in the general case by D. E. Pal’chunov
and A. V. Trofimov).

We say that the subalgebra B of the universal algebra A is automorphic definable if B = Fix f for
some automorphism f of the algebra A. The paper [9] gives the description of the automorphic definable
subalgebras of the Boolean algebras. It seems clear that any automorphic definable subalgebra of the
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algebra A is Galois-closed in A. We say that the algebra A is the algebra with automorphic definable
subalgebras if this is the case for all the subalgebras of A.

Thus any algebra with automorphic definable subalgebras is separable. It is also interesting whether
the converse holds true: Is any separable algebra automorphic definable?

Let us show that this statement is false. Let a signature σ consist of only one one-place function f .
Fix A = 〈{0, 1}; f〉, here f(0) = 1 and f(1) = 0. Let B be the Boolean algebra of all finite and cofinite
subsets of the set ω and AB be a Boolean B-degree of the algebra A, i.e., the subalgebra of direct
degree Aω of the algebra A consisting of all g ∈ Aω for which the set {i ∈ ω | g(i) = 0} is either finite or
cofinite. It is now clear that AB is separable.

Let us define for any universal algebra A = 〈A;σ〉 a quasi-order � on the set A as follows: Put a � b

for any a, b ∈ A if and only if 〈{a}〉A ⊆ 〈{b}〉A. Here, as in the previously given considerations, 〈B〉A
for B ⊆ A denotes a subalgebra of the algebra A generated by the set B. Clearly, a � b if and only if for
any g1, g2 ∈ AutA the equality g1(b) = g2(b) implies the equality g1(a) = g2(a) or otherwise if for any
g ∈ AutA the equality g(b) = b implies the equality g(a) = a.

The element a of the algebra A = 〈A;σ〉 is ∃!-basic (∃!-Lω1ω-) element in A if there exists a ∃!-
basic (∃!-Lω1ω-) formula ϕ(x) in the signature of the algebra A such that A |= ϕ(a). It seems clear
that any ∃!-basic or ∃!-Lω1ω-basic element of the algebra A is the minimal element with respect to the
quasi-order 〈A,�〉. Let us show that the converse does not hold true. Put A = 〈{00, 10, 01, 11}; f(x)〉,
then f(0i) = 1i, f(1i) = 1i for i = 0, 1. Clearly, since there exists an automorphism g of the algebra A

such that g(00) = 01, g(01) = 00, g(10) = 11, g(11) = 10, the algebra A contains neither ∃!-basic nor
∃!-Lω1ω-elements. On the other hand, for any a, b ∈ A we have a � b, i.e., all the elements of the algebra
are minimal with respect to the quasi-order 〈A;�〉.

Finally, Theorem 1 implies that the following holds true.

Corollary 2. a) For any finite universal algebra A = 〈A;σ〉 its element a is minimal with respect to the
quasi-order A = 〈A;�〉 if and only if there exists a ∃!-basic formula ϕb(x, b) of signature σ with the
parameter b such that A |= ϕb(a, b) for any b ∈ A.

b) For any no more than countable universal algebra A = 〈A;σ〉 of no more than countable sig-
nature σ its element a is minimal with respect to the quasi-order 〈A;�〉 if and only if there exists a
∃!-Lω1ω-formula ϕb(x, b) of signature σ with the parameter b such that A |= ϕb(a, b) for any b ∈ A.

The element a ∈ A is maximal in 〈A;�〉 if and only if any automorphism of the algebra A identical on a
is also identical on the whole algebra A. Thus, for instance, for any one-generated algebra A = 〈A;σ〉
its generator is maximal in the quasi-order 〈A;�〉. The other example of algebras A which allow the
existence of the maximal element with respect to the quasi-order 〈A;�〉 is given by stiff algebras (i.e.,
algebras which possess only trivial automorphism). All elements of these algebras are maximal. Note
here that there exist stiff Boolean algebras of any noncountable cardinality (for example, [8]).

The description of the maximal elements with respect to the quasi-order 〈A;�〉 is similar to one given
for the minimal elements.

Corollary 3. The element a of the finite (countable) algebra A = 〈A;σ〉 (of no more than countable
signature) is the maximal element with respect to the quasi-order 〈A;�〉 if and only if any element of A

is ∃!-basic (∃!-Lω1ω-) element in the algebra A{a}.

It also seems interesting to describe properties of A which can be written only in terms of the quasi-
order 〈A;�〉.
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