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Abstract—In this paper we consider the problem of analytical continuation of the solution to the
system of equations of the moment theory of elasticity in spatial many-dimensional domain. We give
an explicit formula of restoring of solution inside the domain by values of sought-for solution and
values of strains on part of the boundary of this domain.
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1. INTRODUCTION

In many real problems a part of boundary is inaccessible for measuring of displacements and
tensions or only integral characteristics are known. In an experimental investigation of tensely deformed
state of nature constructions the measuring can be made on accessible regions, i.e., components of
displacements and tensions are given on a part of boundary, only. Therefore there arises the necessity to
consider the problem of continuation of a solution to the system of equations of the elasticity theory in
the domain using values of displacements and tensions on a part of boundary.

The system of equations for the moment elasticity theory is elliptic. The Cauchy problem for such
systems is ill-posed. A solution uniquely exists, but it is not stable with respect to a small change of
data. In ill-posed problems the existence of solution and its belonging to the class of correctness [1] is
assumed a priori. The uniqueness of solution follows from the general Holmgren’s theorem [2]. After the
establishment of uniqueness in theoretical investigations of ill-posed problems, the important questions
of obtaining an estimate of conditional stability and constructing regularizing operators arise.

In twenties of the previous century T. Carleman has constructed a formula, which connects the values
of an analytical function with respect to a complex variable at points of the analyticity domain with its
values on a part of boundary of this domain. Based on the Carleman formula, M. M. Lavrent’ev [1]
introduced the notion of the Carleman function of the Cauchy problem for the Laplace equation and gave
a mode of its construction for several cases. The structure of the Carleman function gives the possibility
to construct the regularization and obtain the estimate of conditional stability in these problems. The
Carleman function for the Laplace equation has been constructed in [3].

In the present paper, based in the Carleman function and papers [4–10], we construct a regularized
solution of the Cauchy problem for the system of equations of the moment elasticity theory for domains
of a special form.

Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be points of a real Euclidian space Rm, D be a bounded
simply connected domain in Rm with the piecewise smooth boundary ∂D (∂D is composed of differential
manifolds of dimension m − 1) and S be the smooth part of ∂D with the smooth edge.

Let a 2m-component vector-function U(x) = (u1(x), . . . , um(x), w1(x), . . . , wm(x)) = (u(x), w(x))
satisfy the system of equations of the moment elasticity theory in the domain D [11]:

(μ + α)Δu + (λ + μ − α) grad div u + 2α rotw + ρθ2u = 0,

(ν + β)Δw + (ε + ν − β) grad div w + 2α rot u − 4αw + jθ2w = 0,
(1.1)
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where coefficients λ, μ, ν, β, ε, and α, which characterize the medium, satisfy the conditions μ > 0,
3λ + 2μ > 0, α > 0, ε > 0, 3ε + 2ν > 0, β > 0, j > 0, ρ > 0, θ ∈ R1.

We call a vector-function U(y) regular in D, if it is continuous together with its partial derivatives of
the second order in D and of the first order on D = D

⋃
∂D.

Problem definition. It is required to find the regular solution U of system (1.1) in the domain D, based
on its Cauchy conditions given on S:

U(y) = f(y), T (∂y, n(y))U(y) = g(y), y ∈ S, (1.2)

where T (∂y, n(y)) is the tension operator defined by the equality

T (∂y, n(y)) =

∥
∥
∥
∥
∥
∥

T (1)(∂y, n) T (2)(∂y, n)

T (3)(∂y, n) T (4)(∂y, n)

∥
∥
∥
∥
∥
∥

,

T (i)(∂y, n) =
∥
∥T

(i)
kj (∂y , n)

∥
∥

m×m
, i = 1, . . . , 4,

T
(1)
kj (∂y, n) = λnk

∂

∂yj
+ (μ − α)nj(y)

∂

∂yk
+ (μ + α)δkj

∂

∂n(y)
, k, j = 1, . . . ,m,

T
(2)
kj (∂y, n) = −2α

3∑

p=1

εkjpnp(y), T
(3)
kj (∂y, n) = 0, k, j = 1, . . . ,m,

T
(4)
kj (∂y, n) = ε nk(y)

∂

∂yj
+ (ν − β)nj(y)

∂

∂yk
+ (ν + β)

∂

∂n(y)
, k, j = 1, . . . ,m,

n(y) = (n1(y), . . . , nm(y)) is the outer unit normal vector to the surface ∂D at a point y, where
f(y) = (f1(y), . . . , fm(y)) and g(y) = (g1(y), . . . , gm(y)) are given continuous vector-functions on S,
δkj is the Kronecker symbol, εk j p is a so-called ε-tensor or the Levi-Civita symbol defined by the
equalities

εk j p =

⎧
⎪⎨

⎪⎩

0, if at least two of three indexes k, j, p are equal;
1, if (k, j, p) contains an even number of permutations of numbers (1, 2, 3);
−1, if (k, j, p) contains an odd number of permutations of numbers (1, 2, 3).

2. THE CONSTRUCTION OF THE CARLEMAN MATRIX FOR DOMAINS OF THE CAP
TYPE AND THE REGULARIZATION OF THE PROBLEM SOLUTION

It is known [8] that for a regular solution to system (1.1) the integral presentation holds true

U(x) =
∫

∂D

(
Ψ(y, x)

{
T (∂y, n)U(y)

}
−

{
T (∂y, n)Ψ(y, x)

}∗
U(y)

)
dsy, x ∈ D, (2.1)

where “∗” is the transposition operation, and Ψ(y, x) is the matrix of fundamental solutions of the statics
of the moment elasticity theory,

Ψ(y, x) =

∥
∥
∥
∥
∥
∥

Ψ(1)(y, x) Ψ(2)(y, x)

Ψ(3)(y, x) Ψ(4)(y, x)

∥
∥
∥
∥
∥
∥

.

Here

Ψ(i)(y, x) =
∥
∥Ψ(i)

k j(y, x)
∥
∥

m×m
, i = 1, . . . , 4,

Ψ(1)
k j (y, x) =

4∑

l=1

(

δk jαl + βl
∂2

∂ xk∂ xj

)

ϕm(iklr), k, j = 1, . . . ,m,
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Ψ(2)
k j (y, x) = Ψ(3)

k j (y, x) =
2α

μ + α

4∑

l=1

n∑

p=1

εlεk j p
∂

∂xp
ϕm(iklr), k, j = 1, . . . ,m,

Ψ(4)
k j (y, x) =

4∑

l=1

(

δk jγl + δl
∂2

∂ xk∂ xj

)

ϕm(iklr) k, j = 1, . . . ,m,

r = |x − y|, ϕm is the fundamental solution of the Helmholtz equation,

ϕm(λr) = Am

(
λ

2

)m
2
−1

Km
2
−1(λr), A2k = (−1)k · 2k−1, A2k+1 = (−1)k · 2−k+ 1

2 ,

Kν(λ) is the Macdonald function, αl = (−1)l(σ2
2−k2

l )(δ3 l+δ4 l)

2π(μ+α)(k2
3−k2

4)
, βl = − δ1 l

2πρθ2 + αl

k2
l

,
4∑

l=1

βl = 0,

γl =
(−1)l(σ2

1 − k2
l )(δ3 l + δ4 l)

2π(β + ν)(k2
3 − k2

4)
, δl = − δ2 l

2π(jθ2 − 4α)
+

γl

k2
l

,
4∑

l=1

βl = 0,

εl =
(−1)l(δ3 l + δ4 l)

2π(β + ν)(k2
3 − k2

4)
,

4∑

l=1

εl = 0, k2
1 =

ρθ2

λ + 2μ
, k2

2 =
jθ2 − 4α
ε + 2ν

,

k2
3 + k2

4 = σ2
1 + σ2

2 +
4α2

(μ + α)(β + ν)
, k2

3k
2
4 = σ2

1σ
2
2.

It is not difficult to verify that with u = Ψ(1)
j (y, x), w = Ψ(3)

j (y, x) or u = Ψ(2)
j (y, x), w = Ψ(4)

j (y, x)

the homogeneous equations of the statics of the moment elasticity theory are fulfilled, where Ψ(i)
j (y, x)

is the j-vector-row of the ith matrix.
Following [3], we adduce the next definition.

Definition. The Carleman matrix of problem (1.1), (1.2) is a (2m × 2m)-matrix Π(y, x, τ), which
depends on two points y and x and a positive numeric parameter τ and satisfies the following two
conditions:

1) Π(y, x, τ) = Ψ(y, x) + G(y, x, τ),

where the matrix G(y, x, τ) satisfies system (1.1) with respect to the variable y everywhere in the
domain D, Ψ(y, x) is the matrix of fundamental solutions to system (1.1);

2)
∫

∂D\S
(|Π(y, x, τ)| + |T (∂y, n)Π(y, x, τ)|) dsy ≤ ε(τ),

where ε(τ) → 0 with τ → ∞, |Π| is the Euclidean norm of the matrix Π = ‖Πij‖2m×2m, i.e., |Π| =
( 2m∑

i,j=1
Π2

ij

)1/2
, in particular, |U | =

( m∑

k=1

(u2
k + w2

k)
)1/2

.

In papers [4, 5] the following theorem was proved.

Theorem 1. Each regular solution U(x) to system (1.1) in the domain D is defined by the formula

U(x) =
∫

∂D
(Π(y, x, τ){T (∂y , n)U(y)} − {T (∂y, n)Π(y, x, τ)}∗ U(y))dsy, x ∈ D, (2.2)

where Π(y, x, τ) is the Carleman matrix.

Using the Carleman matrix, it is easy to deduce the estimate for the stability of solution to the Cauchy
problem (1.1), (1.2), and indicate the method of efficient solving this problem.

RUSSIAN MATHEMATICS (IZ. VUZ) Vol. 58 No. 2 2014



THE CAUCHY PROBLEM OF THE MOMENT ELASTICITY THEORY IN Rm 27

To find an approximate solution to problem (1.1), (1.2) we construct the Carleman matrix as follows:

Π(y, x, τ) =

∥
∥
∥
∥
∥
∥

Π(1)(y, x, τ) Π(2)(y, x, τ)

Π(3)(y, x, τ) Π(4)(y, x, τ)

∥
∥
∥
∥
∥
∥

, (2.3)

Π(i)(y, x, τ) =
∥
∥Π(i)

kj (y, x, τ)
∥
∥

m×m
, i = 1, . . . , 4,

Π(1)
kj (y, x, τ) =

4∑

m=1

(

δkjαm + βm
∂2

∂yk∂yj

)

Φτ (y, x, iλm), k, j = 1, . . . ,m,

Π(2)
kj (y, x, τ) = Π(3)

kj (y, x, τ) =
2α

μ + α

4∑

m=1

3∑

s=1

εmεkjs
∂

∂xs
Φτ (y, x, iλm), k, j = 1, . . . ,m,

Π(4)
kj (y, x, τ) =

4∑

m=1

(

δkjγm + δm
∂2

∂yk∂yj

)

Φτ (y, x, iλm), k, j = 1, . . . ,m,

where

CmK(xm)Φ(y, x, λ) =
∂k−1

∂sk−1

∫ ∞

0
Im

[
K(i

√
u2 + s + ym)

i
√

u2 + s + ym − xm

]
ψ(λu) du√

u2 + s
, (2.4)

ψ(λu) =

{
uJ0(λu), m = 2k, k ≥ 1;
cos λu, m = 2k + 1, k ≥ 1,

J0(u) is the Bessel function of zero order, s = (y1 − x1)2 +

· · · + (ym−1 − xm−1)2, C2 = 2π,

Cm =

{
(−1)k2−m(m − 2)πωm(k − 2)!, m = 2k;
(−1)k2−m(m − 2)πωm(k − 1)!, m = 2k + 1,

K(ω), ω = u + iv (u and v are real) is an integer function, which takes real values on the real axis and
satisfies the conditions

K(u) 	= 0, sup
v≥1

| exp ν |Im λ|K(p)(ω)| = M(p, u) < ∞, p = 0, . . . ,m, u ∈ R1.

Lemma 1 ([3]). The function Φ(y, x, λ) can be represented in the form

CmΦ(y, x, λ) = ϕm(iλr) + gm(y, x, λ), r = |y − x|,
ϕm is the fundamental solution to the Helmholtz equation, gm(y, x, λ) is a regular function with
respect to x and y, satisfying the equation Δ(∂y)gm − λ2gm = 0.

In (2.4) we set K(ω) = exp(τω). Then

Φ(y, x, λ) = Φτ (y − x, λ),

CmΦτ (y − x, λ) =
∂k−1

∂sk−1

∫ ∞

0
Im

[
exp τ(i

√
u2 + s + ym − xm)

i
√

u2 + s + ym − xm

]
ψ(λu) du√

u2 + s

= exp τ(ym − xm)
∂k−1

∂sk−1

∫ ∞

0

[

− cos τ
√

u2 + α2 + (ym − xm)
sin τ

√
u2 + s√

u2 + s

]

ψ(λu)du. (2.5)

Now in formulas (2.3), (2.4), and (2.5) we set Φ(y, x, λ) = Φτ (y − x, λ) and obtain the matrix
Π(y, x) = Π(y, x, τ).

From Lemma 1 it follows

Lemma 2. The matrix Π(y, x, τ) given by formulas (2.3), (2.4), and (2.5) is the Carleman matrix
of problem (1.1), (1.2).
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Proof. From (2.3)–(2.5) and Lemma 1 we have

Π(y, x, τ) = Ψ(y, x) + G(y, x, τ),

where

G(y, x, τ) =

∥
∥
∥
∥
∥
∥

G(1)(y, x, τ) G(2)(y, x, τ)

G(3)(y, x, τ) G(4)(y, x, τ)

∥
∥
∥
∥
∥
∥

,

G(i)(y, x, τ) =
∥
∥G

(i)
k j(y, x, τ)

∥
∥

m×m
, i = 1, . . . , 4,

G
(1)
k j (y, x, τ) =

4∑

l=1

(

δk jαl + βl
∂2

∂ xk∂ xj

)

gm(y, x, kl, τ), k, j = 1, . . . ,m,

G
(2)
k j (y, x, τ) = G

(3)
k j (y, x, τ) =

2α
μ + α

4∑

l=1

n∑

p=1

εlεk j p
∂

∂xp
gm(y, x, kl, τ), k, j = 1, . . . ,m,

G
(4)
k j (y, x, τ) =

4∑

l=1

(

δk jγl + δl
∂2

∂ xk∂ xj

)

gm(y, x, kl, τ), k, j = 1, . . . ,m.

By direct calculation we can ascertain that the matrix G(y, x, τ) with respect to variable y satisfies
system (1.1) everywhere in D. It is not difficult to prove that

∫

∂D\S
(|Π(y, x, τ)| + |T (∂y, n)Π(y, x, τ)|) dsy ≤ C1(x) τm exp(−τ xm), (2.6)

C1(x) is a bounded function inside D.

We set

Uτ (x) =
∫

S
[Π(y, x, τ){T (∂y , n)U(y)} − {T (∂y, n)Π(y, x, τ)}∗ U(y)]dsy. (2.7)

The following theorem takes place.

Theorem 2. Let U(x) be a regular solution to Eq. (1.1) in the domain D and satisfy on ∂D \ S the
boundary condition

|U(y)| + |T (∂y, n)U(y)| ≤ M, y ∈ ∂D \ S. (2.8)

Then for τ ≥ 1 the estimate holds

|U(y) − Uτ (y)| ≤ MCm(x)τm exp(−τ xm),

where Cm(x) = Cm(ρ)
∫

∂Dρ

dsy

rm .

Proof. From formulas (2.2) and (2.7) we have

|U(x) − Uτ (x)| =
∣
∣
∣
∣

∫

∂D\S
[Π(y, x, τ){T (∂y , n)U(y)} − {T (∂y, n)Π(y, x, τ)}∗ U(y)] dsy

∣
∣
∣
∣

≤
∫

∂D\S
(|Π(y, x, τ)| + |T (∂y, n)Π(y, x, τ)|) (|U(y)| + |T (∂y, n)U(y)|) dsy .

Now, based on (2.6) and (2.8), we obtain the desired inequality.
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Let us adduce the result, which allows us to calculate U(x) approximately, when on the surface S
instead of U(y) and T (∂y, n)U(y) their continuous approximations are given fδ(y) and gδ(y):

max
S

|f(y) − fδ(y)| + max
S

|T (∂y , n)U(y) − gδ(y)| ≤ δ, 0 < δ < 1. (2.9)

Let us define a function

Uτ δ(x) =
∫

S
[Π(y, x, τ)gδ(y) − {T (∂y , n)Π(y, x, τ)}∗ fδ(y)]dsy, (2.10)

where

τ =
1

x0
m

ln
M

δ
, x0

m = max
D

xm, xm > 0.

Theorem 3. Let U(x) be the regular solution to system (1.1) in the domain D, which satisfies (2.8)
in ∂D \ S. Then the estimate is fulfilled

|U(x) − Uτ δ(x)| ≤ C(x)δxm/x0
m

(

ln
M

δ

)m

, x ∈ D,

where C(x) is a function bounded inside the domain and depending on ρ and the space dimension.

Proof. From formulas (2.2) and (2.10) we have

U(x) − Uτ δ(x) =
∫

S
[Π(y, x, τ){T (∂y , n)U(y) − gδ(y)}

− {T (∂y, n)Π(y, x, τ)}∗(U(y) − fδ(y))]dsy

+
∫

∂D\S
[Π(y, x, τ){T (∂y , n)U(y)} − {T (∂y , n)Π(y, x, τ)}∗ U(y)]dsy .

Now from the condition of Theorem and inequalities (2.4), (2.8), and (2.9) for any x ∈ D we obtain

|U(x) − Uτ δ(x)| = C ′(x)δτm exp τ(x0
m − xm) + C ′′(x)τm exp(−τ xm)

≤ C(x)τm(M + δ exp τ x0
m) exp(−τ xm).

Since τ = 1
x0

m
ln M

δ , from the latter inequalities the assertion of Theorem follows.

From these theorems we can obtain the estimate of stability.

Theorem 4. Let U(x) be the regular solution to system (1.1) in the domain D, satisfying
conditions

|U(y)| + |T (∂y, n)U(y)| ≤ M, y ∈ ∂D \ S,

|U(y)| + |T (∂y, n)U(y)| ≤ δ, 0 < δ < 1, y ∈ S.

Then

|U(x)| ≤ C(x)δxm/x0
m

(

ln
M

δ

)m

,

where C(x) = C̃
∫

∂D

1
rm dsy, C̃ is a constant, which depends on λ, μ, ε, β, ν.

Proof. From Theorem 2 it follows
|U(y)| ≤ |Uτ (y)| + MCm(x)τm exp (−τxm),

|Uτ (x)| ≤
∫

S
(|Π(y, x, τ)| + |T (∂y, n)Π(y, x, τ)|) (|U(y)| + |T (∂y, n)U(y)|) dsy

≤ δ

∫

S
(|Π(y, x, τ)| + |T (∂y, n)Π(y, x, τ)|) dsy ≤

∣
∣
∣
∣δCm(x)τm exp (−τxm)

∫

∂S
|r−m|dsy

∣
∣
∣
∣,

where x0
m = max{xm : x ∈ D}. Hence with τ = 1

x0
m

ln M
δ we obtain the assertion of Theorem 4.
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Equations,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 4, 41–50 (2006) [Russian Mathematics (Iz. VUZ) 50
(4), 39–49 (2006)].

8. O. I. Makhmudov and I. E. Niyozov, “Regularization of a Solution to the Cauchy Problem for the System of
Thermoelasticity,” Contemporary Math. (AMS, Providence, RI, 2005), Vol. 382, pp. 285–289.

9. O. I. Makhmudov and I. E. Niyozov, “Regularization of Solutions of the Cauchy Problem for Systems of
Elasticity Theory in Infinite Domains,” Matem. Zametki 68 (4), 548–553 (2000).

10. O. I. Makhmudov and I. E. Niyozov, “Regularization of a Solutions to the Cauchy Problem for Systems
of Elasticity Theory,” in Proceedings of the International 5th ISAAK Congress ‘More progresses on
Analysis’, Ed. by H. G. W. Begehr (Singapore, 2009), pp. 69–84.

11. M. A. Aleksizde, Fundamental Functions in Approximate Solutions of Boundary Problems (Nauka,
Moscow, 1991).

Translated by O. V. Pinyagina

RUSSIAN MATHEMATICS (IZ. VUZ) Vol. 58 No. 2 2014


