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Abstract—A convex function defined on an open convex set of a finite-dimensional space is known to
be continuous at every point of this set. In fact, a convex function has a strengthened continuity prop-
erty. The notion of strong continuity is introduced in this study to show that a convex function has this
property. The proof is based on only the definition of convexity and Jensen’s inequality. The definition
of strong continuity involves a constant (the constant of strong continuity). An unimprovable value of
this constant is given in the case of convex functions. The constant of strong continuity depends, in
particular, on the form of a norm introduced in the space of arguments of a convex function. The poly-
hedral norm is of particular interest. It is straightforward to calculate the constant of strong continuity
when it is used. This requires a finite number of values of the convex function.
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1. We consider the space  with unit basis vectors e1, …, en and an arbitrary norm . We introduce
the notation

Definition. A function f(x) defined on an open set U ⊂  is said to be strongly continuous at a point
x0 ∈  if there is a number β > 0 and a constant L ≥ 0 such that B(x0; β) ⊂ U and

(1)

We show that a convex function has the property of strong continuity.

Due to the equivalence of all norms in the space , we prove inequality (1) for any one norm. In this
section, we select the -norm . We introduce the notation

Theorem 1. Let U ⊂  be an open convex set and let f(x) be a convex function on U. We take a point
x0 ∈ U and an arbitrary number β > 0 such that x0 ± βek ∈ U for k ∈ 1: n. Then, B1(x0; β) ⊂ U and for all
x ∈ B1(x0; β) the inequality

(2)

holds, where

(3)

The constant L is unimprovable.
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Proof. Let hk = βek. Any vector x ∈  can be represented in the form

(4)

We find uk and  from the conditions

We obtain

It is obvious that uk ≥ 0 and  ≥ 0. We have

This implies

(5)

We rewrite formula (4) in the form

We introduce the notation  and  to find

(6)

where all coefficients uk are nonnegative.
We fix a point x ∈ B1(x0; β). According to (5), the relation

(7)

holds true. Representation (6) yields the equality

All coefficients in this representation are nonnegative and their sum is 1. By the assumptions of the theo-
rem, the points x0, x0 + h1, …, x0 + h2n belong to the convex set U. Therefore, x ∈ U. Thus, we have estab-
lished the inclusion B1(x0; β) ⊂ U.

Recall that the function f is convex on U. By Jensen’s inequality, we can write

or

where the constant L is defined by (3). In view of (5), we arrive at

(8)
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Thus, we have

(9)
We now estimate the difference f(x0) – f(x). We introduce the point y = 2x0 – x. We have

We set  and  to write

According to (7), we have

As before, we use the representation

Obviously, y ∈ U. By Jensen’s inequality, the inequality

is valid. Due to (8), the equality

holds, which yields

(10)

We now note that x0 = . Owing to the convexity of the function f, we have

or

(11)
Combining (10) and (11), we arrive at the inequality

(12)
Inequalities (9) and (12) imply (2).

We give an example when inequality (2) with a constant L of form (3) is satisfied as the equality. Exactly
in this sense the fact that the constant L is unimprovable is understood..

We take the convex function f(x) =  on U =  and calculate L with x0 =  and an arbitrary β > 0.

This yields L = 1. In this case, inequality (2) is satisfied as the equality for all x ∈ .
Theorem 1 is thus proved.
Theorem 1 guarantees, in particular, the ordinary continuity of a convex function f(x) on an open con-

vex set U ⊂ .
2. As noted above, the fact that inequality (1) holds for the -norm implies that it holds for an arbitrary

norm in . However, the constant L is rough with this approach. We give a simple independent proof of
inequality (1) for an arbitrary norm  with an unimprovable constant L.
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Theorem 2. Let U ⊂  be an open convex set and let f(x) be a convex function on U. We take a point x0 ∈
U and an arbitrary β > 0 such that B(x0; β) ⊂ U. Then inequality (1) holds, where

(13)

The constant L is unimprovable.
Proof. We first note that the maximum in (13) is attainable. This follows from the ordinary continuity

of the convex function f(x) on the open convex set U and the fact that the argument x = x0 + βg of the func-
tion f when ||g|| = 1 runs over the compact sphere

which is contained in the set U by the assumptions of the theorem.

We now turn to proving inequality (1). We fix x ∈ B(x0; β), x ≠ x0, and put g = . It is evident

that ||g|| = 1. We introduce the function

This function is convex on the interval [–1, 1].
The point x ∈ B(x0; β), x ≠ x0, can be represented in the form

We introduce the notation α = . Then, x = x0 + αβg, where α ∈ (0, 1].
Due to the convexity of the function ϕ, we have

It follows that

(14)

where the constant L is defined by formula (13).
Now we take the point y = x0 – αβg. We have

It follows that

(15)

Further, since x0 = , we have f(x0) ≤  or

(16)
Combining (15) and (16), we arrive at the inequality

(17)

To derive the required inequality (1), we combine (14) and (17).
We give an example when inequality (1) with a constant L of form (13) is satisfied as the equality. We

take the convex function f(x) = ||x|| on U =  and calculate the constant L for it with x0 =  and an arbi-
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trary β > 0. We have L = 1. In this case, inequality (1) is satisfied as the equality for all x ∈ . This gives
us reason to regard the constant L as being unimprovable.

Theorem 2 is proved.
3. Theorem 1 is of a constructive nature: we can find an appropriate number β > 0 in a finite number

of attempts; to calculate a constant L of form (3), a finite number of values of the function f(x) is needed.
Only the definition of a convex function is used when proving the theorem. The ordinary continuity of a
convex function on an open convex set is a corollary of the theorem.

Theorem 2 establishes the strong continuity of a convex function with a sharp constant L in the case
when the space  is endowed with an arbitrary norm. The proof uses the ordinary continuity of a convex
function. Calculating a constant L of form (13) is related to solving the maximization problem for a convex
function on the unit sphere of the space .

The problem of whether inequality (1) holds in the case of the Euclidean norm was previously studied
in [1–3] without analyzing the sharpness of the constant L.
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