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Abstract—Various relaxation stages in high-velocity and high-temperature gases with physicochemical
processes are considered on the basis of model kinetic equations. Macroscopic equations are derived
in the zero approximation of the modified Chapman–Enskog method and expressions for the f low
members of gas-dynamic equations in terms of intensive and extensive parameters are deduced. A for-
mula for the velocity of sound (as the velocity of propagation of small perturbations) is derived using
the parameter , which is not a constant under the considered conditions.

Keywords: model kinetic equations, various relaxation stages, extensive and intensive parameters.
DOI: 10.3103/S1063454118020097

INTRODUCTION
The mathematical description of transport processes in high-velocity and high-temperature gases is

generally conducted using kinetic equations that generalize the Boltzmann equations (see, e.g., [1–3]).
The greatest difficulties in solving kinetic equations are associated with the presence of integral collision-
operators in them. To simplify the solution of the problems, we can use model kinetic equations. Such
equations for the kinetic description of a simple monoatomic gas are proposed in [4, 5]. In later works, the
BGK (Bhatnagar–Gross–Krook) model is generalized for the case of gas mixtures and gases with internal
degrees of freedom (see, e.g., [6, 7]).

It is known (see, e.g., [1–3]) that the collisions of molecules, accompanied by transitions of energy of
internal degrees of freedom from one kind to another and by chemical reactions, have various frequencies.
In many cases, two groups can be specified: in the first group are “fast” microscopic processes and the
second group are “slow” ones (the speed of fast processes is much higher and the speed of slow processes
is comparable to the characteristic rate of the change of macroparameters). In the case where all collisions
belong to the first group, we have equilibrium distributions of molecules. If the first group includes only
some collisions, we obtain nonequilibrium distributions over certain internal degrees of freedom, along
with equilibrium distributions over other internal and translational degrees of the freedom of molecules.
The gas relaxation stages are determined by a group of fast microscopic processes and corresponding sta-
tistical distributions. For the solution of kinetic equations at various relaxation stages, the modified Chap-
man–Enskog method (MCEM) [2] can be used.

In [8], the BGK model for approximation of part of the integral operator of kinetic equations was pro-
posed; this part corresponds to fast microscopic processes. In this case, the model equations allow us to
obtain closed systems of equations for the minimum number of extensive parameters or intensive ones
associated with them in the study of equilibrium and nonequilibrium flow regimes of gas mixtures with
physicochemical processes.

1. GENERALIZATION OF THE BGK MODEL
The statistical distribution has a formation time that is conditioned by collisions of a certain type: the

relaxation time. In gas mixtures with internal degrees of freedom and chemical reactions, relaxation times
satisfy a certain system of inequalities called the “hierarchy of relaxation times” [9].

Typically, these inequalities can be written as follows:

(1)
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170 VOROSHILOVA
where the relaxation times τTT, τRT, and τVRT correspond to the establishment of equilibrium in the trans-
lational, rotational, and vibrational degrees of freedom of molecules; τeq is the time of the establishment
of the complete thermodynamic and chemical equilibrium.

Suppose that θ is the characteristic time of changing macroscopic parameters and τ is the maximum
relaxation time of fast microprocesses. We can introduce a small parameter ε = τ/θ  1. Under this con-
dition, the system of the kinetic equations can be written in the dimensionless form [2, 3, 10]

(2)

Here, the differential operator Di characterizes the change of the distribution functions fi(r, u, t) when
molecules move along phase trajectories; the integral operators  and  describe their change due to
collisions of molecules. Index i specifies the chemical grade of particles and a set of quantum numbers that
characterize the internal-energy levels. It is assumed that the internal energy of a molecule is quantized
and the translational energy is described quasi-classically. The  operator corresponds to fast micro-
scopic processes and the  operator describes slow microscopic processes; ε is an analog of the Knudsen
number for collisions determined by the  operator.

Many works (see, e.g., [1–3, 8, 10, 11]) have been devoted to the solution of Eq. (2) when ε → 0. The
present paper uses distribution functions in the following form [6]:

(3)

where h is the Planck constant; mi, si, and c is the mass, the statistical weight, and the velocity of the ith
molecule (c = u – v, u is the velocity of microparticles in a fixed coordinate system, and v(r, t) is the mean
mass velocity of a gas);  is the part of the internal energy of a molecule (this part exchanges incoming
energy in collisions described by the operator );  (λ = ) are the additive invariants of collisions
of this operator; and γλ (λ = ) are parameters that can depend only on coordinates and time.

Functions (3) coincide with the distribution functions in the zero approximation for the MCEM in the
solution of Eqs. (2). The conditions of the normalization of these functions can be presented as follows:

(4)

(5)

Here, ψ0 =  and ψλ are the densities of determining extensive parameters that correspond to the total val-

ues of the invariants of collisions  =  +  and  per unit volume,

(6)

We compare the right-hand side of relation (4) with the known results of thermodynamics and obtain
the equality

(7)

(k is the Boltzmann constant and T is the gas temperature).
In order to avoid the difficulties associated with the complex form of integral collision-operators, we

can use the following system of model kinetic equations [8]:

(8)
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MODEL KINETIC EQUATIONS AND THE DESCRIPTION 171
System (8) has the same advantages and disadvantages as the BGK model and can be used for describing
weak deviations from equilibrium and nonequilibrium quasi-stationary distribution functions (3).

One criterion for the adequacy of the proposed kinetic model is the validity of the Boltzmann H-theo-
rem. For model Eqs. (8), this theorem is proved in [8]. In the present paper, it is proposed to use the system
of kinetic equations (8) in order to study the transport processes at different relaxation stages of gases with
physicochemical processes.

2. MACROSCOPIC EQUATIONS IN THE MCEM ZERO APPROXIMATION

We multiply each of Eqs. (8) by the collision invariants mic and  (λ = ), integrate the result over
space of the velocities c, sum over i, and obtain the macroscopic equations for v and ψλ (see (4) and (5)):

(9)

(10)

(11)

Here, it is assumed for simplicity that external forces are absent; d/dt =   + v · ∇, and the pressure
tensor is determined by the formula

(12)

the energy transfer vector  has the form

(13)

the transfer vector of any invariants  (λ = ) is written as

(14)

and the relaxation terms are presented as follows:

(15)

Note that the continuity equation

(16)

is a consequence of Eqs. (11), because among them are equations associated with the conservation of cer-
tain indivisible particles.

The macroscopic parameters ψ0 =  and ψλ (λ = ) represent the densities of main extensive param-
eters, the knowledge of which specifies the nature of the f low of a gas mixture under the considered con-
ditions.

In the zero approximation, where fi = , we obtain

(17)
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where p is pressure and I is a unit tensor.
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172 VOROSHILOVA
In this case, gas-dynamic Eqs. (9)–(11) can be presented as follows:

(19)

(20)

(21)

These equations include the relaxation terms

(22)

Note that ψ0 =  and ψλ (λ = ) are related to the parameters γλ (λ = ) included in distribution
functions (3). Here, γλ (λ = ) are intensive parameters conjugate to the densities of the extensive
parameters ψλ (λ = ).

Taking into account relations (3)–(6), it is possible to present the left-hand sides of Eqs. (20) and (21)
as follows:

(23)

According to representation (23), we can consider Eqs. (20) and (21) as a system of linear algebraic
equations for finding the unknowns  (ν = ). The solution of this system can be presented as
follows [11, 12]:

(24)

Here,

(25)

the determinant det is the Jacobian of the transition from extensive to intensive parameters:

(26)

(it is proved in [3] that det > 0);  is obtained from (26) if the column of the γλ-derivatives is replaced
by the column of coefficients for ∇ · v in the right-hand sides of Eqs. (20) and (21); and   is obtained
from (26) by replacing the same column with the column of relaxation terms (22).

Using relations (18) and (6), we can present Eq. (19) as follows [11]:

(27)

where  = ,  = , and  =  are average values of mass, enthalpy, and the

invariants , which fall per one molecule.
According to (4)–(6) and (18), the expression in the right-hand side of Eq. (27) is determined by the

parameters γλ (λ = ) depending on the coordinates and time.
Equations (24) and (27) form a closed system for the velocity v and the intensive parameters γλ (λ =
) in the MCEM zero approximation. This system describes f lows of a nonviscous and thermally non-

conductive gas.
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MODEL KINETIC EQUATIONS AND THE DESCRIPTION 173
3. INTEGRALS OF MOTION AND THE VELOCITY 
OF PROPAGATION OF SMALL PERTURBATIONS

In fluid mechanics, the velocity of sound is associated with the velocity of propagation of small pertur-
bations in a nonviscous and thermally nonconductive f luid.

If we neglect  operators in Eqs. (2) and (8) and the relaxation terms  and  (λ = ) in the right-
hand sides of Eqs. (20) and (21), then according to the traditional methods (see, e.g., [13]) we can obtain
integrals of motion. These integrals can be presented as follows [14]:

(28)

(29)

(30)

Zero on the right-hand side of Lagrangian integral (30) is associated with a particular choice of the
velocity potential ϕ.

In the case of small perturbations, the terms (v · ∇)γλ and   in Eq. (24) and the terms   in Eq. (30)
can also be neglected. Instead of (24), we obtain the equation

(31)

and instead of (30), we have

(32)

Equation (32), which was obtained from (30), we differentiate in time and obtain the relation

(33)

Using integrals (28) and (29), we can present (33) as follows:

(34)

Using expressions (25) and Eqs. (31), we have

(35)

Taking into account the relation ∇ · v = ∇ · (∇ϕ) = Δϕ, expressions (18) for pressure, and the notation
introduced in (27), we obtain the wave equation

(36)

The coefficient of the Laplace operator Δϕ in wave equation (36) can be associated with the squared
velocity of sound [15]:
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174 VOROSHILOVA
is not a constant. Formulas (38) allow determining the dependence of the velocity of sound on the tem-
perature T (or γ0) and other intensive parameters. These formulas are used in [16] to study the effects of
the vibrational excitation of molecules on the velocity of sound.

CONCLUSIONS
The model Eqs. (8) considered in this paper allow us to obtain closed systems of equations for the min-

imum number of extensive or associated intensive parameters in the study of equilibrium and nonequilib-
rium regimes of gas mixture f lows with physicochemical processes. Resulting macroscopic equations (24)
and (27) represent a closed system of equations for the velocity v and the intensive parameters γλ; the sys-
tem describes f lows of a nonviscous and thermally nonconductive gas in the zero approximation of the
MCEM. The squared velocity of sound is defined as the coefficient of the Laplace operator in wave equa-
tion (36). In this case, the parameter  is not fixed under the considered conditions, and formulas (38)
can be used to study the dependence of the velocity of sound on the temperature T and on the intensive
parameters γλ (λ = ).
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