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Abstract—The spatial motion of a passively gravitating body is investigated within the restricted three-
body problem. The exact expression of the force function without expansion in series is used. The
influence of the perturbing star as it approaches the Sun on the orbit of Jupiter is investigated. It is
shown that a star of one to five solar masses that approaches the Solar System in a hyperbolic orbit
within a minimum distance of 50 to 100 AU significantly affects the size and shape of Jupiter’s orbit
only in the case when the sample star is at the perihelion, and Jupiter is in conjunction or in opposition
to it. The results are shown in the form of figures and tables.
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1. STATEMENT OF THE PROBLEM. 
EXPRESSION OF THE DISTURBING FUNCTION

The planar averaged three-body problem is considered in [1, 2] by Mamedov, and the doubly averaged
parabolic three-body problem is considered by Mammadli [3]. It is shown that in the case of a moderate
approach of the disturbing body to the central body, the dimensions and shape of the orbit of the central
body remain constant, and only its orientation changes. The disturbing body is taken to be a solar-mass
star; the planetary orbits are studied in the case of its approach toward the Sun.

Kholshevnikov and Mishchuk [4] considered a restricted hyperbolic three-body problem and esti-
mated the influence of a solar-mass star on the orbits of the planets in the case of its approach to the Sun
at a distance q' of 100 to 1152 AU. It was shown that under a moderate encounter of such a star with the
Sun, the dimensions of the planetary orbits do not exhibit changes. If the star approaches the Sun at a dis-
tance q' ≥ 100 AU, rather minor changes in the inclination, eccentricity, longitude of the ascending node,
and argument of the perihelion of the planetary orbits are observed.

The present study is concerned with the evolution of Jupiter’s orbit during stellar encounters with the
Solar System within the restricted hyperbolic three-body problem.

Let the disturbing body be a star P' with a mass m', which moves relative to the central body, the Sun
P0 with a mass m0, in a hyperbolic orbit. The motion of the passively gravitating body, Jupiter P with a mass
m, needs to be studied.

Let us choose a rectilinear Cartesian coordinate system with the origin at the center of the body P0. In
this coordinate system, the differential equations of motion of the passively gravitating body P will be writ-
ten as follows [1–3, 5]:
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where the force function U = U(x, y, z, x', y', z') depends on the coordinates x, y, and z and x', y', and z' of
the bodies P and P' and is determined by the equation

(2)

Here, G is the gravitational constant, U0 is the force function of the undisturbed motion, and R is the dis-
turbing function. Therefore, the system of equations (1) at U = U0, or, equivalently, R = 0, is the system of
equations of the undisturbed motion. Additionally, r is the radius-vector of the body P, and r' and Δ are
the distances of the disturbing body from the central body P0 and from the point P:

(3)

(4)

Here, θ is the angle between the radius-vectors r and r', and the cosine of this angle is determined by the
equation

(5)

The following expressions are used for the rectangular coordinates x, y, and z [5–7]:

(6)

If all variables in (6) are primed, we obtain similar expressions for the coordinates x', y', and z' [5, 7].
Here, u =  + ω and u' =  + ω' are the arguments of latitude, Ω and Ω' are the longitudes of the ascending
node, i and i' are the orbital inclinations of the bodies P and P' to the main plane, ω and ω' are the argu-
ments of pericenters (for Jupiter’s orbit, the argument of perihelion), and  and  are the true anomalies
of their orbits.

It should be noted that Eq. (6) is the solution of equation system (1) for the undisturbed motion, i.e.,
at U = U0 (or R = 0) [5]. For the disturbed motion (R ≠ 0), the solution of equation system (1) is also rep-
resented as (6), under the condition that the orbital elements u', Ω', i ', a', and e' of the disturbing body are
considered known, and the orbital elements u, Ω, i, a, and e of the body P are determined from differential
equations, such as the Lagrange equations (see the next section), for the osculating elements [5, 7].

Now let us express the disturbing function R via the orbital elements. For this we will use the orbital
equation of the body P:

(7)

For the hyperbolic motion of the disturbing body P', we have

(8)

Thus, the disturbing function R from (4), using the abovementioned formulas (5)–(8), is expressed via
the orbital elements as follows:

(9)

For brevity, expressions (7) and (8) for r and r', as well as expression (5) for cosθ in (9), are not substi-
tuted. This substitution is performed in the computer numerical integration of the Lagrange equations for
osculating elements.
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194 MAMMADLI
2. LAGRANGE EQUATIONS FOR OSCULATING ELEMENTS
Let us write out the Lagrange equations for Keplerian osculating elements in the restricted three-body

problem (see [5, 7]) in the new independent variable . In these equations, the equation relative to  will
be considered instead of the equation relative to the mean anomaly M. For this, the following equations
can be used [7]:

(10)

(11)

where the radius-vectors r and r', as well as focal parameters p and p', are determined earlier with Eqs. (7)
and (8). Let as write out the Lagrange equations as

(12)

and

(13)

Here, a, e, and p are the semimajor axis, eccentricity, and focal parameter of the orbit of the body P,
while i, Ω, and ω are the inclination to the main plane xy, longitude of the ascending node, and the argu-
ment of perihelion, respectively.

In system of equations (12), the function  is related to the disturbing function R from (9), as follows:

(14)

where

(15)

The function  is expressed in the orbital elements by substituting expressions (7) and (8) for r and r', as well
as expressions (5) and (6) for cosθ, into (14). This allows the partial derivatives of the function  with respect
to the orbital elements to be calculated. For brevity, no such substitution is not shown here, although it is per-
formed in the computer numerical integration of the Lagrange equations for osculating elements.

Thus, solving the system of equations (12) and (13) using numerical integration, we find the osculating
elements
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and calculate the mean motion n = n( ) and mean anomaly M = M( ) with the formulas

.

Further, we find the relation between the independent variable  and time t. In the case of a hyperbolic
orbit (e' > 1) of the disturbing body, this relation is established by the equation [5]

(16)

where the mass parameter μ' is determined by Eq. (10).

3. SPECIAL CASES OF THE LAGRANGE EQUATIONS

In the case of small inclinations, it is convenient to use the Lagrange variables  and  instead of the
elements i and Ω [7]:

(17)

at small eccentricities, the Lagrange variables  and  should be introduced instead of the elements e and
ω in the following formula [7]:

(18)

As a rule, the variables  and  are introduced instead of the elements e and  = ω + Ω. Since we are
interested in the variations in the elements e and ω, we use Eq. (18).

Now the disturbing function  from (14), which is involved in the system of equations (12) and (13),
should be expressed through the Lagrange variables:

(19)

To do this, it is sufficient to replace the orbital elements e, ω, Ω, and i for cosθ and r in expressions (5), (6),
and (7) with the Lagrange variables due to Eqs. (17) and (18). Then, we can calculate the partial derivatives of
the function  with respect to the Lagrange variables. For brevity, such a substitution is not shown here.

Thus, the Lagrange equations (12) and (13) in the new variables will have the form
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196 MAMMADLI

Fig. 1. Variations in the semimajor axis a of Jupiter’s orbit depending on the true anomaly  of the sample star moving in
a hyperbolic orbit with e' = 1.15 and m' = : dotted line corresponds to p' = 107.5 AU (q' = 50 AU), solid line corre-
sponds to p' = 161.25 AU (q' = 75 AU), and dashed line corresponds to p' = 215 AU (q' = 100 AU).
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Here,

The system of equations (20) for osculating elements is applicable for determining the elements and
studying the evolution of Jupiter’s orbit, since its inclination and eccentricity are rather small.

4. CHANGE IN THE ORBITAL ELEMENTS OF JUPITER 
DURING A STELLAR ENCOUNTER WITH THE SOLAR SYSTEM

As an example, we will take a sample star approaching the Solar System with mass m', heliocentric dis-
tance q' (in AU), and orbital eccentricity e'. These parameters vary within

(22)

where  is the mass of the Sun. Additionally, the angular elements i', Ω', and ω' of the sample star are
referred to the coordinate system Oxyz with its origin at the center of the Sun; these elements vary within

(23)

The initial values of Jupiter’s orbital elements are taken from the Astronomical Yearbook of 1988 and
are determined as

Jupiter’s angular elements i0, λ0, π0, and Ω0 are referred to the ecliptic and equinox of the epoch
J2000.0, and the gravitational constant equals the Gauss constant: G = k2 = 0.000295936. Additionally,
the elements ω0 and M0 for Jupiter are determined by the equations ω0 = π0 – Ω0 and M0 = λ0 – π0.
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Fig. 2. Variations in the semimajor axis a of Jupiter’s orbit at p' = 161.25 AU: dotted line corresponds to the mass m' = 
of the sample star. dashed line corresponds to m' = , and solid line corresponds to m' = .
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Fig. 3. Variations in the eccentricity e of Jupiter’s orbit depending on the true anomaly  of the sample star moving in a
hyperbolic orbit with e' = 1.15 and m' = : dotted line corresponds to p' = 107.5 AU, solid line corresponds to p' =
161.25 AU, and dashed line corresponds to p' = 215 AU.
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Using the above-mentioned initial values for Jupiter’s orbital elements, differential equation sys-
tem (20) is numerically integrated in the Lagrange variables at the initial value of the independent variable

 = –3π/4. The orbital elements of the sample star are taken as e' = 1.15, i ' = 5°, Ω' = 0°, and ω' = 40°.
These elements play an important role in the construction of the diagrams and tables.

Figures 1 and 2 show the variations in the semimajor axis a (with the initial value a0 = 5.2026032 AU)
of Jupiter’s orbit as a function of the true anomaly  of the star moving in a hyperbolic orbit (e' > 1) relative
to the Sun at certain values of its mass m' (Fig. 2) and focal parameter of its orbit p' (Fig. 1). The focal

v0'

v'
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Fig. 4. Variations in the eccentricity e of Jupiter’s orbit at p' = 161.25 AU: dotted line corresponds to the mass m' = 
of the sample star, dashed line corresponds to m' = , and solid line corresponds to m' = .
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parameter p' and perihelion distance q' are related via the equation p' = q'(1 + e') for the hyperbolic orbit
of the star.

Figures 3 and 4 illustrate the variations in the eccentricity e (with an initial value e0 = 0.04849485),
while Figs. 5 and 6 show the variations in the inclination i (with the initial value i0 = 1°.30327) of Jupiter’s
orbit with similar changes in the mass and perihelion distance of the star with the orbital eccentricity e' =
1.15, depending on the true anomaly , respectively. As can be seen from the figures, after the star recedes
to a large distance from the Sun, Jupiter’s orbital elements a, e, and i slightly change and differ from the
initial values a0, e0, and i0. However, the maximum changes in the size and shape of Jupiter’s orbit occur
only in the case when the sample star is at perihelion, and Jupiter is in opposition.

Table 1 lists the changes in the orbital elements of Jupiter Δa, Δe, and Δi depending on the parameter
p' for the hyperbolic (e' = 1.15) orbit of the star and on its mass m'. As can be seen from the table, the
changes in the orbital elements of Jupiter (semimajor axis a and eccentricity e) are minor. The maximum
changes in the elements a and e occur where a star with a mass m' =  at a distance q' = 50 AU (or p' =
107.5 AU) approaches the Solar System in a hyperbolic orbit.

v'

�5M
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Table 1. Changes in the orbital elements of Jupiter Δa, Δe, and Δi depending on the focal parameter p' for the hyper-
bolic orbit (e' = 1.15) of the star and on its mass m'

p' (AU) m' Δa (AU) Δe Δi (deg.)

107.5

M⊙ –0.009631 0.000214 0.075275

3M⊙ 0.025592 –0.003532 0.169424

5M⊙ –0.030154 –0.012621 0.238626

161.25

M⊙ 0.002507 –0.001059 0.039625

3M⊙ 0.007816 –0.002124 0.087279

5M⊙ –0.012734 –0.004218 0.121404

215

M⊙ 0.001077 –0.000491 0.025249

3M⊙ 0.003302 –0.001224 0.055089

5M⊙ 0.005928 –0.001482 0.076197
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Fig. 6. Variations in the inclination i of Jupiter’s orbit at p' = 161.25 AU: dotted line corresponds to the mass m' =  of
the sample star, dashed line corresponds to m' = , and solid line corresponds to m' = .
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Fig. 5. Variations in the inclination i of Jupiter’s orbit depending on true anomaly  of the sample star moving in a hyper-
bolic orbit with e' = 1.15 and m' = : dotted line corresponds to p' = 107.5 AU, solid line corresponds to p' = 161.25
AU, and dashed line corresponds to p' = 215 AU.
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5. CONCLUSIONS

The problem of the evolution of Jupiter’s orbit during stellar encounters with the Solar System has been
considered within the restricted hyperbolic three-body problem. The influence of a disturbing body (a
star) as it approaches the center body (the Sun) in a hyperbolic orbit on the orbit of a passively gravitating
body (Jupiter) has been studied. The exact expression of the force function has been used without expan-
sion in series.

Variations in the orbital elements of Jupiter depending on the true anomaly of the star moving in a
hyperbolic orbit relative to the central body have been determined. Also, the variations in the orbital ele-
VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 51  No. 2  2018



200 MAMMADLI
ments of Jupiter depending on the perihelion distance of the star (or the focal parameter of its orbit) and
on its mass have been found. The results are presented in figures and tables.

It has been shown that a star with a mass of one to five solar masses approaching the Solar System in a
hyperbolic orbit at a minimum distance between 50 and 100 AU from the Sun significantly influences the
shape and dimensions of Jupiter’s orbit only in the case when the sample star is at the perihelion, and Jupi-
ter is in opposition.
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