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Abstract—An infinitely differentiable periodic two-dimensional system of differential equations is
considered. It is assumed that there is a hyperbolic periodic solution and there exists a homoclinic
solution to the periodic solution. It is shown that, for a certain type of tangency of the stable manifold
and unstable manifold, any neighborhood of the nontransversal homoclinic solution contains a count-
able set of stable periodic solutions such that their characteristic exponents are separated from zero.
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We select a class of infinitely smooth two-dimensional periodic systems of differential equations such
that each one has an infinite set of stable periodic solutions in any neighborhood of the nontransversal
homoclinic solution such that their characteristic exponents are separated from zero. In [1, 2], diffeomor-
phisms are studied such that each one has a fixed periodic point and the point homoclinic to it is non-
transversal; the conditions of existence in a neighborhood of the homoclinic point are obtained for an
infinite set of stable periodic points such that their characteristic exponents are separated from zero.

The aim of the present paper is to find a class of periodic systems such that their Poincaré transforms
satisfy the conditions of the theorems of [1, 2].

Consider a system of the kind

(1)

where z and Z are two-dimensional vectors and the vector Z(t, z) is infinitely differentiable with respect to
all variables and periodic with respect to t with period one, i.e., Z(t + 1, z) = Z(t, z).

Let z(t, z0) denote the solution with the initial data t = 0, z = z0. Assume that z(t, 0) is a hyperbolic peri-
odic solution with period one, and λ and μ are multipliers of that solution. Assume the validity of the
inequalities

(2)

Define the sets

and

It is clear that those sets lie in the stable and unstable (respectively) manifolds and, by virtue of condi-
tions (2), they contain nonzero points. The stable and unstable manifolds are defined as follows:
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10 VASIL’EVA
Let , w ≠ 0. Then the solution z(t, w) of system (1) is said to be homoclinic to the
solution z(t, 0). It is clear that the following relation holds:

We say that a homoclinic solution is transversal if the stable manifold and unstable manifold transver-
sally intersect each other at points of that solution; otherwise, we say that it is nontransversal.

From [3], it is known that infinitely many periodic solutions exist in a neighborhood of any transversal
homoclinic solution and all those solutions are unstable. In [4–6], neighborhoods of nontransversal
homoclinic solutions are investigated; it is shown that there exists a way of tangency for the stable and
unstable manifold such that an arbitrary neighborhood of the nontransversal homoclinic solution con-
tains infinitely many stable solutions, but at least one characteristic exponent of those solutions tends to
zero as the period increases. In the present paper, we consider another way of tangency for the stable and
unstable manifold (compared with [4–6]) and show that, in the considered case, any arbitrary neighbor-
hood of the nontransversal homoclinic solution contains infinitely many stable solutions such that their
characteristic exponents are separated from zero. In [7], an example is provided of a two-dimensional
periodic system that has infinitely many stable periodic solutions in a neighborhood of a homoclinic con-
tour such that the characteristic exponents of each solution are separated from zero.

We define the Poincaré transformation of system (1) as follows:

It is known that the Poincaré transformation is a diffeomorphism of the same smoothness class as sys-
tem (1).

Apart from system (1), we consider a two-dimensional system of differential equations of the kind

(3)

where t ∈ [0, 1], x and y are arbitrary, and X and Y are infinitely differentiable scalar functions of three
variables. Let x(t, x0, y0), y(t, x0, y0) denote the solution of system (3) with the initial data t = 0, x = x0,
y = y0.

We introduce

(4)

We assume that the partial derivatives , , ,  are bounded for any x and y and any t from

[0, 1]. Then f is an infinitely smooth diffeomorphism of the plane C∞ into itself.
It follows from [7] that there exists a two-dimensional periodic system of kind (1) with an infinitely dif-

ferentiable right-hand part such that its Poincaré transform coincides with f. Then we show that there
exists a class of systems of kind (3) such that the corresponding diffeomorphism f satisfies the conditions
of theorems from [1, 2]. Thus, a class of systems of kind (1) is selected for which an arbitrary neighborhood
of the nontransversal homoclinic solution contains infinitely many stable periodic solutions such that
their characteristic exponents are separated from zero.

Thus, the structure of the neighborhood of a nontransversal homoclinic solution depends on the way
of tangency for the stable manifold and unstable manifold. Let us determine that way.

Let

It is clear that the function h(t) is defined for any nonzero t.
Let y0 > 0, μ > 1, and γ be such that γ2π = μ. We define the function g(t) as follows:

(5)
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STABLE PERIODIC SOLUTIONS OF PERIODIC SYSTEMS 11
Theorem 1. Let g(t) be given by conditions (5). Then it is infinitely smooth on the real line,

(6)

and for any positive α, there exists k0 such that if k > k0 and t ∈ (σk – , σk + ), then the inequalities

(7)

hold.
Proof. It is clear that the relation

holds for any positive integer m.
Then the function g has the derivatives of all orders at the origin and they all are equal to zero. It is obvi-

ous that relations (6) hold for any k.
The following relations are obvious provided that t > 0:

and

We fix a positive number α. Let t ∈ . We define u = t − σk. It is clear that

. We obtain

Taking into account that the sine is a periodic function, we have the relation

It is clear that, if k is sufficiently large, then the following inequalities hold:

Then the following relations hold for any t from :

and

Those inequalities imply the validity of conditions (7). The theorem is proved.
Further reasoning shows that properties of the function g determine the way of the touching of the sta-

ble manifold and unstable manifold at the homoclinic point of the diffeomorphism f.
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12 VASIL’EVA
Let A, A1, M, x0, y0, and ε be positive constants such that

(8)

We introduce the notation

We define the sets

and

where λ and μ satisfy inequalities (2), while the function g is given by conditions (5). It is clear that ,
and, by virtue of conditions (8), the sets , i = 1, 2, 3, 4 are pairwise disjoint.

Let system (3) be such that
(9)

for all (t, x, y) from F1,
(10)
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(11)
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STABLE PERIODIC SOLUTIONS OF PERIODIC SYSTEMS 13
(12)

for all (t, x, y) from F4, and

(13)

for all , t ∈ [0, 1].

It is clear that the diffeomorphism f defined by (4) is an infinitely smooth diffeomorphism of the
plane C∞ into itself such that the origin is its fixed hyperbolic point.

We introduce the sets

and

It is clear that  V,  V, i = 2, 3, 4, U5 ⊂ V and the set Ui, i = 1, 2, 3, 4, 5, are pairwise disjoint.
Conditions (9)–(13) imply that f (Ui) = Ui + 1, i = 1, 2, 3, 4.

Let L = f 4|U1. Then

The last relation follows from conditions (9)–(13). It is obvious that the diffeomorphism f has a fixed
hyperbolic point and a nontransversal homoclinic point (x0, 0) such that the way of touching for the stable
manifold and unstable manifold at that point is determined by properties of the function g.

In [4–6], it is assumed that the function g is satisfies the following conditions:

It follows from the cited papers that if the way of touching for the stable manifold and unstable mani-
fold at a homoclinic point is determined by the indicated conditions, then any arbitrary neighborhood of
the nontransversal homoclinic solution can contain infinitely many stable periodic solutions, but at least
one characteristic exponent of those solutions tends to zero as the period increases.

The following theorem holds.
Theorem 2. Let system (3) satisfy condition (2) and conditions (9)–(13). Then any arbitrary neighborhood

of the nontransversal homoclinic point (x0, 0) of the diffeomorphism f defined by relation (4) contains a denu-
merable set of stable periodic points such that their characteristic exponents are separated from zero.

Proof. By virtue of Theorem 1, the function g defined by relations (5) satisfies conditions (6) and (7).
Let the inequality

be satisfied. Then for any positive S there exists a positive integer k0 such that the following relations hold
for any k exceeding k0:
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14 VASIL’EVA
Taking into account the above inequalities, one can easily see that the diffeomorphism f satisfies the
conditions of the theorem from [2]. Therefore, any arbitrary neighborhood of the point (x0, 0) contains a
denumerable set of stable periodic points such that their characteristic exponents are separated from zero.

The theorem is proved.
Corollary. Let the conditions of Theorem 2 be satisfied. Assume that the diffeomorphism f is the Poincaré

transform of the two-dimensional infinitely smooth periodic system of differential equations given by (1). Then
any arbitrary neighborhood of the nontransversal homoclinic trajectory of system (1) contains an infinite set of
stable periodic solutions such that their characteristic exponents are separated from zero.
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