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Abstract—Sufficient conditions for the applicability of the law of the iterated logarithm to sequences
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Theorem 1. Let {Yn; n = 1, 2, …} be a sequence of random variables on a probability space, and let {an; n =
1, 2, …} be a sequence of positive numbers such that an → ∞ as n → ∞ and the following condition
(Condition A) holds: for any ε > 0,

(1)
for all r ≥ 1 and all sufficiently large n. Suppose that

(2)

for some c > 1 and any ε > 0. Then

(3)

Proof. Let δ be any positive number, and let c > 1. By virtue of Condition A, we have

for any ε > 0. Therefore,

provided that the positive number ε is so small that (1 + δ)(1 – ε) > 1 + δ/2.
Taking c satisfying condition (2) and applying the Borel–Cantelli lemma, we obtain inequality (3).
Condition A is a weakening of the condition that the normalizing number sequence {an} is nondecreas-

ing; this condition makes it possible to apply Theorem 1 to sequences of random variables when the nor-
malizing sequence is not nondecreasing but satisfies Condition A. Using Theorem 1, we can obtain a suf-
ficient condition for the applicability of the law of the iterated logarithm to sums of m-dependent random
variables. Recall that a sequence {Xn; n = 1, 2, …} of random variables is referred to as a sequence of m-depen-
dent random variables, where m is a nonnegative integer, if the random vectors (Xp, …, Xq) and (Xr, …, Xs)
are independent for any integer p, q, r, and s satisfying the conditions 1 ≤ p ≤ q < r ≤ s and r – q > m.
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The notion of a sequence of m-dependent random variables was introduced by Hoeffding and Robbins
in a classical paper [1], which also contains conditions for the applicability of the central limit theorem to
sequences of m-dependent random variables. At present, the literature on limit theorems for sums of m-
dependent random variables has become very extensive.

In [2], the notion of a sequence of m-orthogonal random variables was introduced. Given a nonnega-
tive integer m, we say that a sequence {Xn; n = 1, 2, …} of random variables defined on some probability

space is a sequence of m-orthogonal random variables if  < ∞ for any n and E(XkXj) = 0 provided that
|k – j| > m. In particular, any sequence of 0-orthogonal random variables is a sequence of orthogonal ran-
dom variables. If {Xn} is a sequence of m-dependent random variables with zero expectations and finite
variances, then this is a sequence of m-orthogonal random variables. This remains true under the replace-
ment of m-dependence by the weaker condition of pairwise m-dependence. Note that the verification of
m-orthogonality is significantly simpler than that of m-dependence or pairwise m-dependence. The study
of limit theorems for sequences of m-orthogonal random variables is of certain interest thanks to the great
attention given to limit theorems for sums of orthogonal random variables and sums of m-dependent ran-
dom variables. Below, we present a theorem on the law of the iterated logarithm for sequences of m-
orthogonal random variables.

Theorem 2. Let {Xn; n =1, 2, …} be a sequence of m-orthogonal random variables with zero expectations.
Put

(4)

(5)

as n → ∞, and

(6)

for some c > 1 and any ε > 0. Then

(7)

Proof. Let us show that the sequence {Bn} satisfies Condition A. By virtue of the Cauchy–Bunyakovskii
inequality, we have

where |θ| ≤ 1. Therefore, we can write

Condition (5) implies

(8)

For any integer p ≥ 1, we have
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for n > m by virtue of the m-orthogonality condition. Again, using this condition, we can easily show that

Hence

(9)

It follows from (5) and (8) that, for any fixed integer p, we have

. (10)

Relations (9) and (10) imply

(11)

for any ε > 0 and s ≥ 1 and all sufficiently large n. Thus, the sequence {Bn} satisfies Condition A.

Inequality (11) remains valid for Bn replaced by χ(n) = . Thus, the sequence of an =
χ(n) satisfies Condition A. Condition (2) of Theorem 1 also holds for Yn = Sn and an = χ(n) by virtue
of (6). According to Theorem 1, relation (7) holds.

Theorem 2 remains true under the replacement of m-orthogonality by m-dependence (provided that
the other conditions in the theorem are satisfied) or by the even weaker condition of pairwise m-depen-
dence. The resulting theorem generalizes Theorem 2 of [3], in which conditions (4) and (5) are assumed
to hold and, instead of (6), it is required that, for any b > 1, there exist positive constants C and δ such that

for all sufficiently large n. The theorem of [2] differs from this theorem in that the m-dependence condi-
tion is replaced by the m-orthogonality condition.
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