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Abstract—This paper deals with a class of elastic systems with structural damping subject to nonlocal
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1. INTRODUCTION

Let  be a Banach space, we consider the following nonlocal Cauchy problem for the elastic sys-
tem with structural damping

(1.1)

(1.2)

where  is a closed linear operator,  is given constant, ,  and
 are given functions, which will be explained in Section 3.

The elastic systems with structural damping were studied by Chen and Russell [1] in 1981. They con-
sidered the elastic system as follows

(1.3)

(1.4)

in Hilbert space , where  (the elastic operator) and  (the damping operator) are unbounded positive
definite self-adjoint operators in . If some additional conditions are satisfied, they proved that

generates an analytic semigroup on  In 1986, Huang [2] discussed above problem, he pro-
posed  then either of the following conditions (a) and (b) implies that  generates an
analytic semigroup on 

(a)  for all 

(b)  for all  for some  with 

1 The article is published in the original.
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In 1988, Huang [3] developed problem (1.3)–(1.4) for the damping operator , and the elastic oper-

ator  is replaced by operator  . Fan, Li, and Chen [4] obtained the existence of mild solu-

tions for the elastic system with structural damping in Banach spaces:

, (1.5)

(1.6)

where the damping constant  and the nonlinearity f is Lipschitzian in the second variable. The ana-
lyticity and the exponential stability of semigroup generated by the elastic system

(1.7)

(1.8)

were given by Fan and Li [5], where  for a fixed value  In [6] Fan and Gao discussed

asymptotic behavior of solutions for the linear elastic system with structural damping

(1.9)

(1.10)

and the semilinear elastic system with structural damping

(1.11)

(1.12)

in Banach spaces, where  for a fixed value ,  is a sectorial operator,  generates

an analytic and exponentially stable semigroup on  is continuous, and f is Lipschitz
continuous in the second variable. Although problem (1.1)–(1.2) has been an interesting subject, no
attempt has made to find its decay solutions with explicit decay rate, up to knowledge. This is the motiva-
tion for our study.

Motivated by [6], we deal with elastic systems with structural damping subject to nonlocal conditions.
The concept of nonlocal conditions were first used by Byszewski [7]. This notion is more appropriate than
the classical one to describe natural phenomena because it allows us to consider additional information,
see Deng [8], Byszewski et al. [9]. The purpose of this paper is to use a fixed point principle for condensing
maps for measures of noncompactness [10] to prove the existence of decay mild solutions u with

 as 
The rest of our work is organized as follows. In the next section, we recall some notions and facts

related to measures of noncompactness and condensing map, which will be used to prove the existence of
mild solutions on  in Section 3 and the existence of decay mild solutions on  in Section 4.
In the last section, we give an example to illustrate the obtained results.

2. PRELIMINARIES

Let E be a Banach space. We denote by  the collection of all nonempty bounded subsets in E.
Definition 2.1. A function  is called a measure of noncompactness (MNC) in E if

where  is the closure of the convex hull of Ω. An MNC Φ in E is called

(i) monotone if for  implies 

(ii) nonsingular if  for 
(iii) invariant with respect to union with compact set if  for every relatively compact

 and 

@
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(iv) algebraically semi-additive if  for any 
(v) regular if  is equivalent to the relative compactness of Ω.
An important example of MNC is the Hausdorff MNC  which is defined as following:

(2.1)

for 
Proposition 2.2. Let  be the Hausdorff MNC on Banach space  Then for any  there

exists a sequence  such that

 (2.2)

Let  be the space of all continuous functions defined on the interval  taking values in
 which is a Banach space with the norm  It is known that, when  the Haus-

dorff MNC on  is given by (see [11, Example 2.11])

(2.3)

The last measure can be seen as the modulus of equicontinuity of a subset in  In 
with X being of infinite dimensional, there is no such formulation as (2.2). However, if 
is an equicontinuous set then

(2.4)

Here χ is the Hausdorff MNC in X and 

Consider the space  of bounded continuous functions on  taking values on X. Denote by
 the restriction operator on this space, that is  is the restriction of u on  Then

(2.5)

is an MNC. We consider other MNCs on this space as following

(2.6)

(2.7)

(2.8)

The regularity of MNC  is proved in [2, Lemma 2.6].
We have the following estimate, whose proof can be found in [10].

Proposition 2.3 [10]. Let χ be the Hausdorff MNC on Banach space X, sequence  such
that  for every  and a.e  here  is a nonnegative function. Then we
have

(2.9)

for 
Using Proposition 2.2 and Proposition 2.3, we get

Proposition 2.4. [12] Let χ be the Hausdorff MNC on Banach space X and  If there exist
functions  which satisfy following conditions

(i)  for  and a.e 

(ii)  for a.e 
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Then

(2.10)

where 

We denote by  the space of linear bounded operators from  into itself, χ is the Haus-
dorff MNC on X. For each , we define the χ – norm of T (see [11]) as following

(2.11)

We have following estimate (see [13])

(2.12)

We recall the following definition in [14, Definition 6.1.1].
Definition 2.5. A -semigroup  is equicontinuous if the function  is continuous from

 to  endowed with the uniform operator norm 

To end this section, we recall the fixed point principle for condensing maps that will be used in next
section.

Definition 2.6 [13]. Let β be an MNC on Banach space E, and . A continuous map
 is said to be condensing with respect to β (β – condensing) if for  the relation

 implies the relative compactness of Ω.
Theorem 2.7 [10]. Let D be a bounded convex closed subset of Banach space E and let  be a β

condensing map with β being a monotone and nonsingular MNC on E. Then  is
a nonempty compact set.

3. EXISTENCE RESULT
In the formulation of problem (1.1)–(1.2), we assume that
(A) The operator  generates a equicontinuous  semigroup  on Banach space X. By this

assumption,  with the graph norm  becomes a Banach space.

(G) The function  obeys the following conditions:
(i) g is continuous, and

(3.1)

for all  where  is a nondecreasing function.
(ii) There exist non-negative constants  such that

(3.2)

(3.3)

for all bounded set 
(H) The function  satisfies following conditions:

(i) There is a continuous and nondecreasing function  such that

(3.4)

for all 
(ii) There exists a non-negative constant  such that
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for all bounded set Ω ⊂ C([0,T]; X).
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(F) The nonlinear function  satisfies:
(i)  is measurable for each  is continuous for a.e  and

(3.6)

for all , where  is continuous and nondecreasing function.

(ii) If the semigroup  is noncompact, there exists  such that  and

(3.7)
for all bounded set Ω ⊂ X.

Remark 3.1. 1) If  satisfies the Lipschitz condition, i.e.,

for some  then (3.6) and (3.7) are satisfied.
2) If g is compact, then (3.2) is satisfied.
Set

We give the definition of mild solution to the problem (1.1)–(1.2) as following
Definition 3.2. A function u ∈ C([0, T]; X) is said to be a mild solution of problem (1.1)–(1.2) on the

 if

(3.8)

for any  where 
We denote , where  is given. We define the solution operator

 by
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for 
From the assumptions imposed on g, h, f, we see that F is a continuous map on  Set
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Proof. Assume to the contrary that for each , there exists a sequence  with 
but . From the formulation of F, we have

where

We have

(3.11)

(3.12)

(3.13)

(3.14)

From (3.11)–(3.14), we have

which implies

Therefore

(3.15)

Passing to the limit in the last inequality, one gets a contradiction. Lemma 3.3. is proved. □
Lemma 3.4. Let the assumptions of Lemma 3.3 hold. Then
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Then

Hence

(3.18)

2. Applying Proposition 2.2., for every  there exists a sequence  such that

(3.19)

It is easy to see that  is an equicontinuous set. Therefore
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Theorem 3.5. Let the assumptions of Lemma 3.4. hold. Then problem (1.1)–(1.2) has at least one mild
solution on  provided that

(3.26)

(3.27)

Proof. From inequality (3.26), the solution operator F is a  condensing. Indeed, let be  is
a bounded set such that  Applying Lemma 3.4, we obtain

Therefore  and then D is relatively compact.
By assumption (3.27), applying Lemma 3.3, we have  Next we apply Theorem 2.7, the

 condensing map F defined by (3.9) has set  which is compact and nonempty set. This
shows that the problem (1.1)–(1.2) has at least one mild solution  given by (3.8). □

4. EXISTENCE OF DECAY MILD SOLUTIONS
In this section, we consider solution operator F on the following set:

where  is the closed ball in  centered at origin with radius R; β and γ are positive numbers
which are chosen later. This is a bounded convex closed subset in 

On  we make use of MNC χ* given by (2.8). We will prove that F keeps  invariant, i.e.,
 and F is χ* condensing on  To this end, we have to replace (A), (G), (H),

and (F) by stronger ones:
(A*) Operator  is the infinitesimal generator of a equicontinuous  semigroup  such that

where  are positive constants.
(G*) The assumption (G) is satisfied with any 
(H*) The assumption (H) is satisfied with any 

(F*) The assumption (F), is satisfied with  and  such that
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Lemma 4.1. Let (A*), (G*), (H*), and (F*) hold. If

(4.1)

(4.2)

then there exist positive numbers R, β such that 

Proof. 1. Firstly, we prove the existence of  which is invariant under the solution operator F. Indeed,
assume to the contrary that for each , there exists  satisfying  but . By
the same arguments as in Lemma 3.3, we have

(4.3)

(4.4)

(4.5)

From (4.3), (4.4), and (4.5), we obtain

for each  Therefore

(4.6)

Passing to the limit as  in the last relation, we get a contradiction to (4.1).

2. Next, we prove that there is a positive number β such that  Indeed, assume to
the contrary that for each  there exists  (this means ) such that
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we see that

thank to  Therefore

(4.9)

From (4.7)–(4.9), we have

for  and  where  This implies that

Passing to the limit as  in the last relation, we get a contradiction to (4.2). □
Lemma 4.2. Let (A*), (G*), (H*), and (F*) hold. Then we have

(4.10)

for all bounded set 

Proof. Let  be a bounded set. We have
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Therefore

(4.17)

Taking into account (4.11), (4.16), and (4.17), one gets the conclusion of the lemma. □
Combining Lemma 4.1 and Lemma 4.2 we get the following theorem.
Theorem 4.3. If the assumptions of Lemma 4.1 are satisfied and the inequality

(4.18)

takes place, then the problem (1.1)–(1.2) has at least one mild solution on  such that  as

Proof. By inequality (4.18), the solution operator F is a χ* condensing, thanks to Lemma 4.2. Indeed,
if  is a bounded such that . Applying Lemma 4.2, we obtain

Therefore , and so D is relatively compact.

By assumption (4.1), (4.2) and Lemma 4.1, we have  So applying Theorem 2.7,
the solution operator F defined by (3.9) has a compact and nonempty fixed point set in  which
contains decay solutions of the problem (1.1)–(1.2). □

5. AN EXAMPLE

Let Ω be a bounded domain in  with the smooth boundary  We consider the following problem:

(5.1)

(5.2)

(5.3)

where  is a continuous function,  and

 such that 

Let  and , with the domain  It is known that (see, e.g.
[15]),  generates a compact (and hence equicontinuous) semigroup , which is exponential stable,
i.e.,  with  being the first eigenvalue of . Writing

we can transform the problem (5.1), (5.3) to the abstract form (1.1)–(1.2). Concerning the nonlinear
function f, we assume that, there exists a function  such that

Then we have

Noting that the operator
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is of Hilbert–Schmidt type as an operator on  then it is compact. This implies the map g defined by
 is also compact. Similarly,  is a compact mapping. So the condition (G*)(ii) is satisfied

with  In addition, we see that

Thus (G*)(i) is testified.
Regarding the function h, we have

Then

The assumption (H*)(ii) is satisfied with . On the other hand, it is easily seen that

which implies (H*)(i).
By the above settings, by simple computations one gets

Applying Theorem 4.3 we can conclude that, the problem (5.1)–(5.3) has at least on solution
 satisfying  as  provided that

(5.4)

(5.5)
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