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Abstract—A Laplace series of spherical harmonics Yn(θ, λ) is the most common representation of the
gravitational potential for a compact body T in outer space in spherical coordinates r, θ, λ. The Che-
byshev norm estimate (the maximum modulus of the function on the sphere) is known for bodies of
an irregular structure:〈Yn〉 ≤ Cn–5/2, C = const, n ≥ 1. In this paper, an explicit expression of Yn(θ, λ)
for several model bodies is obtained. In all cases (except for one), the estimate 〈Yn〉 holds under the
exact exponent 5/2. In one case, where the body T touches the sphere that envelops it,〈Yn〉 decreases
much faster, viz.,〈Yn〉 ≤ Cn–5/2pn, C = const, n ≥ 1. The quantity p < 1 equals the distance from the ori-
gin of coordinates to the edge of the surface T expressed in enveloping sphere radii. In the general case,
the exactness of the exponent 5/2 is confirmed by examples of bodies that more or less resemble real
celestial bodies [16, Fig. 6].
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INTRODUCTION
Let us consider the gravitational potential V of the compact body T in outer space in spherical coordi-

nates r, θ, λ. In [1–5], a Laplace series was proposed in order to represent this potential.

(1)

Here, M is the mass of T, R is the scale factor, Yn is the dimensionless spherical harmonic, and the gravi-
tational constant is taken to be unity. In the general case, the spherical harmonic depends on 2n + 1
parameters (Stokes coefficients). Effective methods for determining the Stokes coefficients by satellite
measurements have been developed and put into practice [6–8]. In the case of the axial symmetry, Yn(θ,
λ) ≡ Yn(θ) = cnPn(cos θ) holds, and only one parameter cn remains. As usual, Pn denotes a Legendre poly-
nomial with standard normalization Pn(1) = 1. Equation (1) takes the form

(2)

As is customary in theoretical investigations, let us designate the radius of the enveloping sphere that con-
tains T and that has at least one common point with T as R.

The rate of convergence of series (1) significantly depends on the smoothness of the mass distri-
bution in the body T. The higher the smoothness is, the faster the series converges, as is the case in
the theory of functional approximation by truncated series [9–11]. However, in this case it is quite
difficult to determine the concept of smoothness [12]. Thus, the density can experience even discon-
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tinuities at the intersection of the surfaces of equal density, if only they are sufficiently smooth.
Simultaneously, if the surface ∂T of an even homogeneous body T has edges, it dramatically reduces
the smoothness of the mass distribution, since ∂T loses smoothness, which can be considered as the
surface of equal density.

For applications, one of the most interesting classes of bodies is the class 7 of compact bodies with
bounded integrable density (r, θ, λ), which has uniformly bounded variation along any circle centered at
the origin of the coordinates. All real celestial bodies belong to this class. For bodies T ∈ 7, the estimate
is known [12]

(3)

Here and below, different constants depending on the properties of density  are denoted by C; 〈·〉 is the
Chebyshev norm (the maximum modulus of the function on a sphere). We suppose that n ≥ 1, since Y0 is
identically equal to one.

We note that such an estimate (with the divisor n2 instead of n5/2) was obtained for the first time by M.S.
Yarov–Yarovoi [13].

In the axially symmetric case, we have the following

(4)

Estimate (3) is exact in the following sense. There is a body T ∈ 7 such that for some C inequality (3) holds
but the following is valid

(5)

for any fixed σ > 5/2. Several supporting examples are given in [12]. In this paper, we extend the list of
examples, while still limiting ourselves to homogeneous bodies of revolution, for which (4) holds true. In
these model examples (for the first four Stokes coefficients, cn are taken from [12]), the bodies resemble
the real planets and moons slightly. However, we then construct more realistic shapes for them as from
elements.

1. A HEMISPHERE IN THE REFERENCE FRAME 
WITH THE ORIGIN AT THE CENTER OF THE SPHERE

For even positive n, we have cn = 0. For odd n, the following holds

Applying the Wallis formula, we obtain

(6)

2. A SPHERICAL SECTOR IN THE REFERENCE FRAME 
WITH ITS ORIGIN AT THE TOP OF THE SECTOR

Let us denote the sector half angle by α. Then, we have

Here, Pnk are defined in the APPENDIX together with asymptotics (16), which implies

(7)
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From the cosine sequence, for any α, it is possible to select a sequence separated from zero, which proves
the accuracy of estimates (3).

Remark. Formula (6) follows from (7) and is given because of its simplicity.

3. A CYLINDER IN THE REFERENCE FRAME WITH THE ORIGIN 
AT ITS CENTER AND THE Z AXIS DIRECTED ALONG THE AXIS OF SYMMETRY

Let us denote the base radius by a and the cylinder height by 2b (see Fig. 1; A2A3 = a, ОА2 = b, ОА3 =

R = , ∠A2OA3 = α). Then, for odd n, we will have cn = 0, and for even n:

Taking the designation of the angle A2OA3 by α into account let us represent the last formula in the form

Taking the asymptotics (16) into account we obtain

4. A CONE IN THE REFERENCE FRAME WITH THE ORIGIN AT ITS APEX

Let us denote the cone half angle by α. Then, we have

whence it follows
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Fig. 1. The cylinder cross section by a plane passing through the axis of symmetry z.
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5. A SPHERICAL SEGMENT IN DIFFERENT REFERENCE FRAMES
Let us consider a spherical segment T with a radius a and a half-angle α, 0 < α ≤ π/2. Let us investigate

the Laplace series T in coordinate systems with the z axis along the symmetry axis but with different posi-
tions of the point of origin.

5.1. A Reference Frame with the Origin at the Center of the Corresponding Sphere
Figure 2 shows the section T in the form of the plane passing through the axis of symmetry; for fixed

w = OB1 = OB3, the angle θ varies from 0 to θ*, cos θ* = (a/w)cos α.
Stokes constants were calculated in [14]:

(8)+= α
+ α α

1,24
3 (cos ).

2(2 cos )sin ( /2)
n nc P

Fig. 2. The cross section of the spherical segment by a plane passing through the axis of symmetry z; OA1 = OA2 = OA3 =
α, ∠A1OA2 = α; OB2 = acos α.
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Using (16), we find the asymptotics

5.2. A Reference Frame with the Origin Displaced Upward
Let the origin be displaced upward by a distance of b > 0 (see Fig. 3; OO1 = b, R = O1A1 =

. The enveloping sphere S1 passes through the points A1 and A3). The quantity cn can-
not be expressed explicitly in terms of n, α, a, b. However, in [14], formulas (3) and (5) were proved for T,
which is sufficient for our purposes.

5.3. A Reference Frame with the Origin Displaced Downward
Let the origin be displaced downward by a distance of b > 0 (see Fig. 4). In this case, O2O = b, R0 =

O2A1 = , R = a + b, R > R0. The enveloping sphere S2 passes through the point A2.
The circle with the center at O2 that passes through A1 and A3 represents a cross section of the boundary
of the convergence region of the Laplace series S*. In [14], an estimate significantly stronger than (3) was
obtained:

(9)

where

A sphere with its center at O2 that passes through the points A1 and A3 is the convergence boundary of the
Laplace series S*. Note that the cross sections of segments and spheres are shown in the figures. In the
space, segment edge corresponds to the points A1 and A3, so that the sphere and the segment have a com-
mon circle.

6. A SEGMENTED SPHERE
Bodies that slightly resemble the real planets and moons were investigated above. Let us now construct

more realistic shapes of the segments of the same radius a. At this point, the reference frame with the ori-
gin at the center of the generating sphere is used.
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Fig. 4. The cross section of the spherical segment in the reference frame O2.
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Let T1 be the reflection of T with respect to the equatorial plane, the southern segment. The gravita-
tional potential T1 at the point with Cartesian coordinates x, y, z coincides with the potential T at the point
x, y, –z. Therefore, Stokes coefficients cn for T1 coincide with those for T multiplied by (–1)n. Instead of
(8), for T1 at n ≥ 2 we obtain

(10)

Here, we take the fact into account that in the case of the merger of bodies located inside the sphere r ≤ R
harmonics MYn are combined instead of Yn.

Let T2 be the combination of the northern segments with the parameters αi,  and southern segments

with the parameters , , i = 1, …, K, i ' =1, ..., K '. One of the numbers K, K ' can be zero; then the cor-
responding sum in the expression cn (see below) is considered to be zero. Without loss of generality, we

consider the sequences αi and  to be increasing ones. Figure 5 shows the body T2 for K = 3, K' = 0.

Since the segments are nested within each other, in fact in the northern hemisphere there is one seg-

ment half angle αK and in the southern, with the angle . The density in the northern hemisphere as one
moves towards the equator successively takes the values  + … + ,  + … + , …, . The situation
in the southern hemisphere is similar when moving toward the equator. Therefore, some of the values of

,  can be negative, while maintaining the positive density of the body T2. Note that T2 is a nonuniform

sphere, if αK =  = π/2 is true.

In terms of potential additivity, the harmonic coefficients T2 at n ≥ 2 are

(11)

Let us consider some special cases of the above construction.

Let T3 be T2 in the case of symmetry of the northern and southern hemispheres, i.e., K = K', αi = ,

 =  holds true. Then, both sums in (11) are identical. Therefore, for odd n, we will have cn = 0, and for
even n ≥ 2
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Fig. 5. The cross section of the body T2 at K = 3, K' = 0.
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Let T4 be a barrel-shaped homogeneous body with a density of  obtained by cutting of the northern α and
southern α' segment half angles from the sphere (Fig. 6).

The body T4 is obtained by adding the body T2 at K = K' = 1 and  =  =  to the sphere with a den-
sity of . If one of the segments is missing we obtain a dome instead of a barrel. Since all the harmonics of
the sphere (except for the zero one) disappear, for n ≥ 2 we arrive at the equalities

(13)

If the barrel is symmetrical, i.e., we have α = α', odd harmonics disappear, and even harmonics are

(14)

CONCLUSIONS

We investigated the rate of convergence of the Laplace series of several model bodies, viz., a hemi-
sphere, spherical sector, cylinder, cone, spherical segment, and segmented sphere. In all cases (with one
exception), the decrease rate of〈Yn〉 is described by the best possible estimate (3). An important role is
played here by the shape S, the intersection of the boundary ∂T of the body T and the enveloping sphere S.

In Examples 1, 2, and 5.1, the shape S consists of the part of the sphere S with a positive area. The
boundary S is the edge of the surface ∂T. The segmented sphere can be attributed to this class of bodies.
Boundaries between segments with different densities can be considered as edges.

In Examples 3, 4, and 5.2, S consists of curves that lie on the sphere S that represent the edges of the
surface ∂T.

An exception is Example 5.3, where〈Yn〉 decreases much faster according to (9). In this case, the shape
S is the point at which ∂T touches S; in its vicinity the surface ∂T is analytic. Interestingly, the region of
convergence of series (1) is the sphere S*, whose radius equals to the distance to the edge of the surface
∂T that lies within the sphere S. Thus, in this case too the sphere of convergence S* is determined by the
edge of the surface ∂T, as in the previous cases.

The case where S consists of a finite number of points Ak, in whose neighborhood ∂T lies inside a cone
with the vertex Ak with an axis passing through the point of origin and the half angle less than π/2 was not
explored.

The model bodies (a hemisphere, spherical sector, cylinder, cone, and spherical segment) slightly
resemble the real planets and moons. A segmented sphere is a more realistic shape for the representation
of the gravitational potential of a celestial body.
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APPENDIX

1. Generating functions. On the product of the segment –1 ≤ x ≤ 1 and the circle |z| < 1 the following
expansions hold true

(A.1)

Here, Pn0 = Pn is the Legendre polynomial and Pnk are successive integrals

2. The asymptotics Pnk is given by the expression

(A.2)

where rk(n, θ) are bounded at 0 ≤ θ ≤ π, n ≥ 2. Formulas (A.1) and (A.2) can be found in [15, 16].
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