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Abstract—It is well known that any compactly supported continuous complex differential n�form can
be integrated over real n�dimensional C1 manifolds in �m (m ≥ n). For n = 1, the integral along any
locally rectifiable curve is defined. Another generalization is the theory of currents (linear functionals
on the space of compactly supported C∞ differential forms). The topic of the article is the integration
of measurable complex differential (n, 0)�forms (containing no ) over real n�dimensional C0 man�

ifolds in �m with locally finite n�dimensional variations (a generalization of locally rectifiable curves
to dimensions n > 1). The last result is that a real n�dimensional manifold C1 embedded in �m has
locally finite variations, and the integral of a measurable complex differential (n, 0)�form defined in
the article can be calculated by a well�known formula.
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As is known, the theory of the integration of differential forms on smooth manifolds can be generalized
to piecewise smooth manifolds and, in the case of dimension 1, it can be generalized to rectifiable curves
(see, e.g., [1, Vol. 3, Chapter 3]). In [2], the theory of integration of 1�forms along rectifiable curves was
generalized to higher dimensions. Namely, the notions of an n�dimensional manifold in �m with locally
finite variations (which, in particular, include all manifolds with locally finite n�dimensional Hausdorff
measure) and a certain vector measure on it taking values in the space of n vectors were introduced. The
integral of a differential form was defined as integral with respect to this vector measure. The purpose of
the present paper is to generalize the theory of integration of complex differential forms, namely, of forms
of bidegree (n, 0) (containing no ) to the case of integration over real n�dimensional manifolds with

locally finite variations in �m. On such manifolds, a vector measure with values in the space of complex n
vectors and the integral of a measurable differential form of bidegree (n, 0) with respect to this measure
are defined. In the case of a real n�dimensional manifold in �n, the vector measure can be identified with
a measure, the values of which are complex numbers.

As is known, in the theory of functions of several complex variables, the most important are holomor�
phic differential forms (that is, bidegree forms (n, 0) with holomorphic coefficients). In particular, for the
form f(z1, …, zn)dz1 ∧ … ∧ dzn, the Cauchy–Poincaré theorem on the vanishing of the integral along the
smooth boundary of an (n + 1)�surface is valid. We believe that this result can be generalized to the case
of a boundary with finite n�dimensional Hausdorff measure.

At the end of the paper, we prove that, for a manifold smoothly embedded in �m, the definition of the
integral of a differential form coincides with the conventional one.

Consider the mapping from �2m to �m defined by

(which identifies the elements of �2m with those of �m). Denoting the basis vectors in �2m by ej, we have

dzj

dzj

I x1 y1 x2 y2 … xm ym, , , , , ,( ) x1 iy1+ x2 iy2+ … xm iym+, , ,( )=

I ej( )
ẽk if j 2k 1;–=

iẽk if j 2k,=⎩
⎨
⎧

=
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where the  are the basis vectors in �m.

Let n ∈ �, n ≤ m. Using the mapping I, we define a mapping from the set of n vectors in �2m over the
field � to the set of n vectors over � as follows: given j1, …, jn ∈ �, 1 ≤ j1 < … < jn ≤ 2m, let α = {j1, …, jn},
and let e

α
 =  be a simple n vector in �2m. We set P(α) = β, where β = {k1, …, kn}, kp = [(ip +

1)/2] (the integer part of the fraction ), and

;

this is a simple n vector in �m. It is clear from the definition of I(ej) that

, where q(α) is the number of even numbers jp in α. (1)

Note that if jp = 2k – 1 and jp + 1 = 2k, then kp = kp + 1 and  =  ∧ … ∧  = 0, i.e., J(e
α
) vanishes.

In the general case, given an n vector , we set

This is an n vector in �m.
Let m ≥ n, and let M be an oriented manifold of real dimension n with locally finite variations embed�

ded in �m. In [2], the following measure on the manifold M (which is embedded in �2m in the case under
consideration), the values of which are real n vectors was defined as follows:

where μ
α
(E) is the oriented measure of the α�projection of E and ℜM is the δ�ring of measurable subsets

of M; recall that (see [2, Section 4, definition after Lemma 9])

Here,  and  are σ�algebras on which the measures  and , respectively, are defined.

Definition 1. We define the complex n vector measure of a set E belonging to the δ�ring ℜM as the com�
plex n vector

Obviously, in this formula, we can only consider the sum over those α for which J(e
α
) ≠ 0; then, P(α) =

β = {k1, … kn}, 1 ≤ k1 < … < kn ≤ m. Below, we always use the notation

α = {j1, … jn}, where j1, … jn ∈ �, 1 ≤ j1 < … < jn ≤ 2m,

β = {k1, … kn}, where k1, … kn ∈ �, 1 ≤ k1 < … < kn ≤ m.

Consider all α such that P(α) = β for fixed β. We have (see (1)) J(e
α
) = iq(α) , and the sum breaks into

three groups of summands as follows:

(2)

where β = {k1, …, kn}, 1 ≤ k1 < … < kn ≤ m, and

(3)

ẽj

ej1
… ejn

∧ ∧

ip 1+
2

����������

J eα( ) I ej1
( ) … I ejn

( )∧ ∧=

J eα( ) iq α( ) ẽβ=

ẽβ ẽk1
ẽkn

λαeα
α

∑

J λαeα
α

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

λαJ eα( ).

α

∑=

μM E( ) μα E( )eα, E
α

∑ ℜM,∈=

ℜM E M E �α

+ �α

–∩
α

∩ μα

+ E( ) and μα

– E( ) are finite for any α,∈⊂
⎩ ⎭
⎨ ⎬
⎧ ⎫

.=

�α

+ �α

– μα

+ μα

–

μ̃M E( ) J μM E( )( ) μα E( )J eα( ).

α

∑= =

ẽβ

μ̃M E( ) iq α( )μα E( )
P α( ) β=

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

ẽβ

β

∑ μβ E( )ẽβ,

β

∑= =

μβ E( ) iq α( )μα E( )
P α( ) β=

∑=
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is the complex measure of the projection of the set E on the subspace of �m generated by the vectors
, …, .

In the case n = m, the space of complex n vectors is one�dimensional (β = {1, 2, …, m} is the only pos�
sibility) and, therefore,

In this case, instead of the n vector measure , we can consider the measure on ℜM, the values of
which are complex numbers defined as

As is known [4, Chapter 1, Section 3], given an additive vector function m defined on the ring ℜ of sub�
sets of a set T and taking values in a normed space X, its variation is defined as

(here, ||m(Ak)|| is the norm of m(Ak) in the space X). A vector function m is said to have finite variations if
|m|(A) < ∞ for any A ∈ ℜ.

Lemma 1. The measures  and  have finite variations.

Proof. (1) Suppose that A ∈ ℜM,  ⊂ A, and the Ak belong to ℜM and are disjoint. Then (see

(3)),

Since A ∈ ℜM, it follows that the numbers (A) and (A) are finite and

(2) The space of n vectors in �m is finite�dimensional; therefore, all norms in this space are equivalent,
and we can consider an arbitrary norm

The properties of the norm imply

ẽk1
ẽkn

μ̃M E( ) iq α( )μα E( )
P α( ) 1 2 … m, , ,{ }=

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

ẽ1 … ẽm.∧ ∧=

μ̃M

μM E( ) μ 1 2 … m, , ,{ } E( ) iq α( )μα E( )
P α( ) 1 2 … m, , ,{ }=

∑ .= =

m A( ) sup m Ak( )
k 1=

p

∑ Ak A⊂
k 1=

p

∪ the Ak belong to ℜ and are disjointed,
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

μβ μ̃M

Akk 1=
p∪

μβ Ak( )
k 1=

p

∑ iq α( )μα Ak( )
P α( ) β=

∑
k 1=

p

∑ iq α( )μα Ak( )
P α( ) β=

∑
k 1=

p

∑≤=

=  μα

+ Ak( ) μα

– Ak( )–
P α( ) β=

∑
k 1=

p

∑ μα

+ Ak( ) μα

– Ak( )+
P α( ) β=

∑
k 1=

p

∑≤

=  μα

+ Ak( )
k 1=

p

∑ μα

– Ak( )
k 1=

p

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

P α( ) β=

∑ μα

+ A( ) μα

– A( )+( ).

P α( ) β=

∑≤

μα

+ μα

–

μβ A( ) sup μβ Ak( )
k 1=

p

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

μα

+ A( ) μα

– A( )+( )
P α( ) β=

∑ ∞.<≤=

μ̃M Ak( ) μβ Ak( ) ẽβ.

β

∑=

μ̃M Ak( )
k 1=

p

∑ μβ Ak( ) ẽβ⋅
β

∑
k 1=

p

∑ ẽβ μβ Ak( )
β

∑
β

max
k 1=

p

∑≤ ≤

≤ ẽβ μβ Ak( )
k 1=

p

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

β

∑
β

max ẽβ μα

+ A( ) μα

– A( )+( ) see item 1( )( ).

P α( ) β=

∑
β

∑
β

max≤
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Hence,

 �

Theorem 1. Let M be an oriented manifold of real dimension n smoothly embedded in �m (m ≥ n), and let
E ⊂ U = f(�n), where f is a positive parameterization (a C1 diffeomorphism) of a neighborhood U ⊂ M and

E ∈ . Then, the set f –1(E) is Lebesgue measurable and, for each β = {k1, …, kn},

E ∈ ℜM implies

E ∈ implies

Here, if

and

then det  is the determinant of matrix composed of the rows of f ' with numbers k1, …, kn.

Proof. (1) Let us write the coordinate functions of the mapping f in real form:

, i.e., fk = g2k – 1 + ig2k.

According to Theorem 2 of [3], the set f –1(E) is Lebesgue measurable and, as shown in the proof of the
same theorem (the end of item 3.3), we have

Thus, it follows from (3) that

(4)

μ̃M A( ) sup μ̃M Ak( )
k 1=

p

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

ẽβ μα

+ A( ) μα

– A( )+( )
P α( ) β=

∑
β

∑
β

max ∞.<≤=

�α

+ �α

–∩( )
α∩

μβ E( ) detfβ' λn,d

f
1–

E( )

∫=

�α

+ �α

–∩( )
α

∩ μβ E( ) det fβ' λn.d

f
1–

E( )

∫=

f : 

z1 x1 iy1+ f1 t1 … tn, ,( ),= =

 

zm xm iym+ fm t1 … tn, ,( ),= =⎩
⎪
⎨
⎪
⎧

… f '

f1∂
t1∂

�����
f1∂
t2∂

����� …
f1∂
tn∂

�����

f2∂
t1∂

�����
f2∂
t2∂

����� …
f2∂
tn∂

�����

    

fm∂
t1∂

������
fm∂
t2∂

������ …
fm∂
tn∂

������
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

… … … …

fβ'

f : 

x1 g1 t1 … tn, ,( ),=

y1 g2 t1 … tn, ,( ),=

 

xm g2m 1– t1 … tn, ,( ),=

ym g2m t1 … tn, ,( ),=⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

…

μj1… jn
E( ) μα E( ) det gα' λn.d

f
1–

E( )

∫= =

μβ E( ) iq α( )μα E( )
P α( ) β=

∑ iq α( )

P α( ) β=

∑ det gα' λn.d

f
1–

E( )

∫= =
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We have

Performing this procedure for each row of the initial determinant, which is the sum of the row of partial
derivatives of  and the row of partial derivatives of  multiplied by i, we obtain

where q(α) is the number of even indices in the set α = {j1, …, jn}; thus (see (4)),

(2.1) Suppose that  ⊂ E and E ∈ , where the Ek belong to ℜM and are disjoint.

It follows from item (1) that

By the definition of variation, we have

(5)

(2.2) Suppose that E ∈ ℜM and E ⊂ K ⊂ U, where K is compact. Then f –1(K) is compact as well (f is a

homeomorphism of �n onto U) and the continuous function det  is uniformly continuous on f –1(K), i.e.,

(6)

det fβ'

fk1
∂

t1∂
������

fk1
∂

t2∂
������ …

fk1
∂

tn∂
������

fk2
∂

t1∂
������

fk2
∂

t2∂
������ …

fk2
∂

tn∂
������

    

fkn
∂

t1∂
������

fkn
∂

t2∂
������ …

fkn
∂

tn∂
������

g2k1 1–∂

t1∂
������������� i

g2k1
∂

t1∂
���������+ …

g2k1 1–∂

tn∂
������������� i

g2k1
∂

tn∂
���������+

g2k2 1–∂

t1∂
������������� i

g2k2
∂

t1∂
���������+ …

g2k2 1–∂

tn∂
������������� i

g2k2
∂

tn∂
���������+

   

g2kn 1–∂

t1∂
������������� i

g2kn
∂

t1∂
���������+ …

g2kn 1–∂

tn∂
������������� i

g2kn
∂

tn∂
���������+

= =

… … … … … … …

=  

g2k1 1–∂

t1∂
������������� …

g2k1 1–∂

tn∂
�������������

g2k2 1–∂

t1∂
������������� …

g2k2 1–∂

tn∂
�������������

   

g2kn 1–∂

t1∂
������������� i

g2kn
∂

t1∂
���������+ …

g2kn 1–∂

tn∂
������������� i

g2kn
∂

tn∂
���������+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

i

g2k1
∂

t1∂
��������� …

g2k1
∂

tn∂
���������

g2k2 1–∂

t1∂
������������� i

g2k2
∂

t1∂
���������+ …

g2k2 1–∂

tn∂
������������� i

g2k2
∂

tn∂
���������+

   

g2kn 1–∂

t1∂
������������� i

g2kn
∂

t1∂
���������+ …

g2kn 1–∂

tn∂
������������� i

g2kn
∂

tn∂
���������+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+ .

… … …… … …

g2kp 1– g2kp

det fβ'  … i
q j1 … jn, ,( )

det gj1 … jn, ,
'

jn 2kn 1–=

2kn

∑
j2 2k2 1–=

2k2

∑
j1 2k1 1–=

2k1

∑ iq α( )
det gα' ,

P α( ) β=

∑= =

μβ E( ) det fβ' λn.d

f
1–

E( )

∫=

Ekk 1=
p∪ �α

+ �α

–∩( )
α∩

μβ Ek( )
k 1=

p

∑ det fβ' λnd

f
1–

Ek( )

∫
k 1=

p

∑ det fβ' λnd

f
1–

Ek( )

∫
k 1=

p

∑≤=

=  det fβ' λnd

f
–1

k 1=

p

∪ Ek( )

∫ det fβ' λn.d

f
–1

E( )

∫≤

μβ E( ) sup μβ Ek( )
k 1=

p

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

det fβ' λn.d

f
–1

E( )

∫≤=

fβ'

ε∀ 0 δ∃ 0 : t t ', f 1– K( ) t t '– δ det fβ' t( ) det fβ' t '( )– ε.≤⇒≤∈∀> >
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Consider the cover of f –1(K) by open balls of diameter δ and choose its finite subcover: f –1(K) ⊂ .

It easily follows from K ⊂ U = f(�n) that K = f(f –1(K)) ⊂ . The mapping f is a homeomor�

phism of �n and U; therefore, the sets f(Bk) are open in the open neighborhood U ⊂ M and, hence, in M,
i.e., they are α+�measurable for any α = {j1, …, jn} (see [2, Section 4, Lemma 8]). A similar argument
proves the measurability of α–� (see [2, Section 4, remark after Lemma 9]); thus,

i.e., E ∩ f(Bk) ∈ ℜM. We set

It is easy to verify that the sets Ek are disjointed, E =  and, based on the properties of a ring of

sets, all values of Ek belong to ℜM. The mapping f is injective; therefore, f –1(f(Bk)) = Bk, from which we
have

Moreover, the sets f –1(Ek) are Lebesgue measurable (see [3, Theorem 2]). Thus, for fixed tk ∈ Ek, we obtain

(see item (1)).

Since the sets Ek are disjointed and E = , it follows that the sets f –1(Ek) are disjoint as well and

f –1(E) = . As a result, we obtain

(by the definition of the variation of a measure),

Bkk 1=
p∪

f Bk( )
k 1=
p∪

f Bk( ) �α

+ �α

–∩( )
α

∩ E f Bk( ) �α

+ �α

–∩( ),
α

∩∈∩⇒∈

μα

+ E f Bk( )∩( ) μα

+ E( ) ∞, μα

– E f Bk( )∩( ) μα

– E( ) ∞,<≤<≤

E1 E f B1( ), Ek∩ E f Bk( )∩( )\ E f Bk( )∩( ) for k,
s 1=

k 1–

∪ 2 … p., ,= = =

Ekk 1=
p∪

f 1– Ek( ) f 1– E f Bk( )∩( ) f 1– E( ) Bk Bk diam f 1– Ek( )( )⇒⊂∩⊂ ⊂

≤ δ see 6( )( ) t tk Ek det fβ' t( ) det fβ' tk( )– ε≤∈,∀⇒

 det fβ' t( ) det fβ' tk( ) det fβ' t( ) det fβ' tk( )– ε det fβ' tk( ) .+≤+≤⇒

det fβ' t( ) λnd

f  
1–

Ek( )

∫ ε λn f 1– Ek( )( ) det fβ' tk( ) λn f 1– Ek( )( )⋅+⋅≤

=  ε λn f 1– Ek( )( ) det fβ' tk( ) λn f 1– Ek( )( )⋅+⋅ ε λn f 1– Ek( )( ) det fβ' tk( ) λnd

f  
1–

Ek( )

∫+⋅=

=  ε λn f 1– Ek( )( ) det fβ' t( ) λnd

f  
1–

Ek( )

∫ det fβ' tk( ) det fβ' t( )–( ) λnd

f  
1–

Ek( )

∫++⋅

≤ ε λn f 1– Ek( )( ) det fβ' t( ) λnd

f  
1–

Ek( )

∫ det fβ' tk( ) det fβ' t( )– λnd

f  
1–

Ek( )

∫++⋅

≤ ε λn f 1– Ek( )( ) det fβ' t( ) λnd

f  
1–

Ek( )

∫ ε λn f 1– Ek( )( )⋅+ +⋅

=  2ε λn f 1– Ek( )( ) μβ Ek( )+⋅

Ekk 1=
p∪

f 1– Ek( )
k 1=
p∪

det fβ' t( ) λnd

f  
1–

E( )

∫ det fβ' t( ) λnd

f  
1–

Ek( )

∫
k 1=

p

∑ 2ε λn f 1– Ek( )( )
k 1=

p

∑ μβ Ek( )
k 1=

p

∑+≤=

≤ 2ε λn f 1– E( )( ) μβ E( )+⋅
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i.e., (7)

We have f –1(E) ⊂ f –1(K), and the set f –1(K) is compact; therefore, λn(f –1(E)) < ∞. Passing to the limit as
ε  0 in (7), we obtain

(2.3) Let Ck = ; then �n =  and U = f(�n) = . For any E ∈

, E ⊂ U, we set

for k = 2, 3, ….

It is easy to verify that the Ek are disjoint and E = . The mapping f is a homeomorphism; there�

fore, the sets f(Ck) are compact and, by Theorem 6 of [2, Section 4], f(Ck) ∈ ℜM ⊂ . Prop�

erties of a σ�algebra imply

i.e., all Ek belong to ℜM. Since  is countably additive, it follows that the variation | | is as well (see [4,
Chapter 1, Section 3]). From the inclusions Ek ∈ f(Ck) and item (2.2), we conclude that

 �

Definition 2. Let m ≥ n, and let M be an oriented n�manifold in �m with locally finite variations. A func�
tion ω : M × (�m)n  � is called a step differential n�form on M if there exist finite families of sets

, Ek ∈ ℜM, and exterior n�forms  over the field � such that

(  denotes the characteristic function of the set Ek).

Since ℜM is a δ�ring, we can assume that the sets Ek are disjoint [4, Chapter 2, Section 6, Subsection 1].

As is known [5, Chapter 3, Section 5, note], the exterior n�form ϕ generates a ��linear functional 
on the space of n vectors, which is defined at the basis n vectors by

(8)

Therefore, we can define the integral of a step differential form with respect to the vector measure  as
follows [4, Chapter 2, Section 7, Subsection 1]:

if , then (9)

Defining the integral of not necessarily step differential forms requires that the vector measure have
additional properties. In the spaces of exterior n�forms and n vectors, the dual norms of any exterior n�
form ϕ and n vector v satisfy the inequality || (v)|| ≤ ||ϕ|| · ||v|| (  is the linear functional corresponding
to the form ϕ). Moreover, ℜM is a δ�ring, and the measure  has finite variation. Thus, we can use the
theory of integration of vector functions with respect to vector measures (see [4, Chapter 2, Section 8]).
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The following definition is a reformulation of a general definition given in [4] for differential forms and
the measure .

Definition 3. Let M be an oriented real n�dimensional manifold with locally finite variations embedded
in �m (m ≥ n). The differential form ω is as follows: M × (�m)n  � is said to be �integrable if there

is a sequence  of step differential forms such that

(1)  is a Cauchy sequence, i.e.,  = 0.

(2) The ωk converge to ω almost everywhere with respect to the measure | |.

In this case, we set

If A ∈  and the differential form ω · χA is integrable, then the form ω is said to be integrable

on the set A, and its integral is defined as  = .

Theorem 2. Suppose that M is an oriented n�manifold in �m with locally finite variations, a set K ⊂ M is
compact, and the restriction ω|K of a differential form ω is continuous on K. Then, ω is integrable on K.

The proof of this theorem is a word�for�word repetition of that of Theorem 7 in [2] (with |μM| replaced
by | |).

Theorem 3. Let M be an oriented manifold of real dimension n smoothly embedded in �m (m ≥ n). Then,

(1) M is a manifold with locally finite variations;

(2) If E ⊂ U = f(�n), where f is a positive parameterization (a C1 diffeomorphism) of a neighborhood U ⊂
M, and E is small and α+� and α–�measurable for all α = {i1, …, in}, then f –1(E) is Lebesgue measurable;

(3) If a differential form ω(z) =  is integrable on E with respect to the measure , then

(*)

Proof. Assertions (1) and (2) were proved in [3, Theorem 2, items 1 and 2]. Let us prove (*).

(1) Suppose that E ⊂ U = f(�n), E ∈ ℜM, and ω =  ∧ … ∧  (a constant differential form). Let

us show that

By the definition of the integral of a step differential form, we have

Since the functional  is ��linear, it follows that (see (2))
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Based on a lemma similar to Lemma 2 in [1, Vol. 3, Chapter 2, Section 2] (for an exterior form over �),
it follows that

(here, k1 < k2 < … < kn and j1 < j2 < … < jn). Therefore, only one summand in (10) is nonzero. We obtain

(by Theorem 1).

(2) Suppose that E ⊂ U = f(�n), E ∈ , and ω is a step differential form. For this form,

let us prove (*).

We have ω = , where the ϕk are constant differential forms and all Ek belong to the ring

ℜM. Hence,

and i.e.,  ∈ ℜM,

and the form  is step, too. Therefore, without a loss of generality, we can assume that ω = .

Thus, we have ω = , where the sets Ek can be assumed to be disjointed (see [4, Chapter 2,

Section 6, Subsection 1]) and Ek ⊂ E. Let ϕk =  ∧ … ∧ ; then, for z ∈ Ek, we have ω(z) =

 ∧ … ∧ , and for z ∈ E\ , we have ω(z) = 0. Therefore,

if , then 

The linearity of integral and the result obtained for the form  ∧ … ∧  imply

the integrand is continuous because f ∈ C(1)(�n).

If t ∈ f –1(Ek), then f(t) ∈ Ek, i.e., aβ( f(t)) = aβk. In this case,
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If t ∈ f –1(E)\  = , then aβ( f(t)) = 0 for all β. Using the disjointedness of the

sets f –1(Ek), we obtain

which proves (*) for step differential forms. Note that the integrand function is continuous on the Leb�

esgue measurable sets f –1(Ek) and f –1(E)\ ; i.e., it is Lebesgue measurable.

(3) Let ω be a differential form integrable on E ⊂ U = f(�n). Then, by definition, there is a

sequence  of step forms such that ωk(z)  ω(z) almost everywhere with respect to the measure

| |. Since the space of exterior forms is finite�dimensional, the convergence ωk(z)  ω(z) is equivalent

to coordinatewise convergence in any basis. This means that, if ωk(z) =  and ω(z) =

, then, for any β, we have aβk(z)  aβ(z) | | almost everywhere. Let us prove that the func�

tions aβk(f(t))det (t) converge to aβ(f(t))det (t) almost everywhere with respect to the Lebesgue mea�

sure on �n.

Let Eβ = {z ∈ E|aβk(z)  aβ(z)}; then, Eβ ∈ ℜM and | |(Eβ) = 0.

Let Pβ = {t ∈ �n|aβk(f(t))det (t)  aβ(f(t))det (t)}. Then,

t ∈ Pβ ⇔ aβk(f(t))  aβ(f(t)) and det (t) ≠ 0

⇔ f(t) ∈ Eβ and det (t) ≠ 0 ⇔ t ∈ f –1(Eβ) ∩ {t ∈ �n|det (t) ≠ 0}.

Since Eβ ∈ ℜM, it follows that the set f –1(Eβ) is Lebesgue measurable (by Theorem 1). The function

det (t) is continuous and, therefore, Lebesgue measurable; hence, the set {t ∈ �n|det (t) ≠ 0} is mea�
surable as well. We have proved that

Pβ = f –1(Eβ) ∩ {t ∈ �n|det (t) ≠ 0} is measurable.

Using the definition of the variations in the measure, we have

It follows that, for any E' ⊂ Eβ, E' ∈ ℜM, we must have (E') = 0; thus, (E') = 0 for any β, from which

we have | |(Eβ) = 0. Based on Theorem 1,

Since det  = 0 outside the set Pβ, as required, we have

, on Pβ,  ⇒ λn(Pβ) = 0. 
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As noted at the end of the proof of item (2), all functions aβk( f(t))det (t) are measurable. Since

aβk( f(t))det (t)  aβ( f(t))det (t) almost everywhere, it follows that the functions (aβ � f)det  and

|(aβk � f)det  – (aβ � f)det | are Lebesgue measurable on f –1(E).

(4) Let us prove that  =  · .

The function aβk is step and measurable with respect to the σ�algebra , and aβk(z) 

aβ(z) almost everywhere with respect to the measure | | (defined on the same σ�algebra); therefore, the

aβ and |aβk – aβ| are measurable as well. The measure | | is defined on  ⊃

; hence, the integral  makes sense.

If h is a step function and h = , where all ci ≥ 0 are nonnegative, all Ei are disjoint and belong

to the σ�algebra , and E = , then, according to Theorem 1, we have

(because f(t) ∈ Ei ⇒ h( f(t)) = ci for t ∈ f –1(Ei)).

The nonnegative function |aβk – aβ| on E, which is measurable with respect to all of the measures 

and , is the limit of an increasing sequence of nonnegative step functions, i.e.,

∀z ∈ E 0 ≤ hj(z) ≤ hj + 1(z), hj(z)  |aβk(z) – aβ(z)| ( j  ∞)

(we can set hj(z) =  if  ≤ |aβk(z) – aβ(z)| < , where k is an integer, k < j · 2j, and hj(z) = j if

|aβk(z) – aβ(z)| ≥ j). All properties of the sequence  are easy to verify. Obviously, we have

∀t ∈ f –1(E) 0 ≤ h1( f(t))|det (t)| ≤ h2( f(t))|det (t)| ≤ …,

hj( f(t))|det (t)|  |aβk( f(t)) – aβ( f(t))| · |det (t)|;

passing to the limit in the relation  =  and applying Levi’s monotone

convergence theorem, we obtain

(5) Let gk(t) = , and let g(t) = . The functions (aβ � f)det

are Lebesgue measurable (by item (3)); therefore, so is g. By the remark to item (2), the functions gk are
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measurable; hence, |gk – g| is measurable and nonnegative, i.e., the integral  makes sense.

Let us prove that   0 as k  ∞. We have

According to item (4),

By the definition of the measure , for any A ∈ ℜM, (A) is a coordinate of the n vector (A) in the

basis { }. Since the mapping taking each n vector to its coordinate is linear and continuous in any norm
on the space of n vectors (which is finite�dimensional), it follows that there is a constant C1 > 0 such that
| | ≤ C1|| (A)|| for any β and any A ∈ ℜM. Using the definition of the variation of a measure, we can

easily check that | |(A) ≤ C1| |(A) for any A ∈ , from which we have

Note that aβk(z) – aβ(z) is a coefficient of the exterior form ωk(z) – ω(z). The mapping taking each exterior
form to the set of its coefficients is linear and continuous (the spaces of exterior forms and of coefficients
are finite�dimensional). The sum of the absolute values of coordinates of a vector is a norm on a finite�
dimensional space; therefore, for any norm in the space of exterior forms, there is a constant C2 > 0 such

that, for any exterior form ϕ = , we have  ≤ C2||ϕ||; in particular,

The space of integrable differential forms is linear [4, Chapter 2, Section 8, Subsection 1, Proposition 1];
therefore, ωk – ω is integrable on E with respect to the measure , and ||ωk – ω|| is integrable with respect

to | | [4, Chapter 2, Section 8, Subsection 1, Proposition 4]. Thus,

Using the preceding inequalities in this item, we obtain
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This inequality implies that the function g is Lebesgue integrable on f –1(E). Since  is a Cauchy

sequence and ωk(z)  ω(z) | | almost everywhere, it follows that [4, Chapter 2, Section 8, item 2,
Proposition 12]

  0,   0.

Therefore,

(according to item (2) for step forms ωk and the definition of the integral of the form ω). �
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