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Abstract—It is well known that any compactly supported continuous complex differential #-form can
be integrated over real n-dimensional C! manifolds in C” (m > n). For n = 1, the integral along any
locally rectifiable curve is defined. Another generalization is the theory of currents (linear functionals

on the space of compactly supported C* differential forms). The topic of the article is the integration
of measurable complex differential (n, 0)-forms (containing no dz;) over real n-dimensional C° man-

ifolds in C™ with locally finite n-dimensional variations (a generalization of locally rectifiable curves
to dimensions n > 1). The last result is that a real n-dimensional manifold C' embedded in C™” has

locally finite variations, and the integral of a measurable complex differential (#, 0)-form defined in
the article can be calculated by a well-known formula.
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As is known, the theory of the integration of differential forms on smooth manifolds can be generalized
to piecewise smooth manifolds and, in the case of dimension 1, it can be generalized to rectifiable curves
(see, e.g., [1, Vol. 3, Chapter 3]). In [2], the theory of integration of 1-forms along rectifiable curves was
generalized to higher dimensions. Namely, the notions of an #-dimensional manifold in R” with locally
finite variations (which, in particular, include all manifolds with locally finite #n-dimensional Hausdorff
measure) and a certain vector measure on it taking values in the space of n vectors were introduced. The
integral of a differential form was defined as integral with respect to this vector measure. The purpose of
the present paper is to generalize the theory of integration of complex differential forms, namely, of forms

of bidegree (n, 0) (containing no dz;) to the case of integration over real n-dimensional manifolds with
locally finite variations in C”. On such manifolds, a vector measure with values in the space of complex n
vectors and the integral of a measurable differential form of bidegree (#, 0) with respect to this measure
are defined. In the case of a real n-dimensional manifold in C”, the vector measure can be identified with
a measure, the values of which are complex numbers.

As is known, in the theory of functions of several complex variables, the most important are holomor-
phic differential forms (that is, bidegree forms (#, 0) with holomorphic coefficients). In particular, for the
form f(z,, ..., 2,)dz; A ... A dz,, the Cauchy—Poincaré theorem on the vanishing of the integral along the
smooth boundary of an (n + 1)-surface is valid. We believe that this result can be generalized to the case
of a boundary with finite #n-dimensional Hausdorff measure.

At the end of the paper, we prove that, for a manifold smoothly embedded in C”, the definition of the
integral of a differential form coincides with the conventional one.

Consider the mapping from R?” to C” defined by
[(xlsyla x25y23 ---,xm,ym) = (xl + iyla x2 + iY2s '--’xm + IYm)
(which identifies the elements of R*" with those of C™). Denoting the basis vectors in R*" by e;, we have
e, ifj = 2k—1;
I(e) = {

ie, ifj= 2k,
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COMPLEX VECTOR MEASURE AND INTEGRAL OVER MANIFOLDS 35

where the Ej are the basis vectors in C.

Let n € N, n < m. Using the mapping /, we define a mapping from the set of # vectors in [R?” over the
field R to the set of n vectors over C as follows: given jj, ...,j, € N, 1 <j, <...<j, <2m, let o= {j, ..., j,},

and lete, = ¢; A ... Ae; beasimple n vector in R*”. We set P(a) = B, where B = {k,, ..., k,}, k, = [(i, +

o+ 1
1)/2] (the integer part of the fraction : ; ), and

J(e,) = 1(e;)n ...~ I(e );
this is a simple # vector in C”. It is clear from the definition of I(e)) that
J(e,) = iq(a)éﬁ ,  Where g(a) is the number of even numbers j, in a. (1)

Note that if j, = 2k — 1 and j,, , , = 2k, then k, =k, , yand ey = ¢, A ... A ¢, =0, .., J(e,) vanishes.

In the general case, given an n vector Z A€, , We set
o

I[Z?»aeaJ = ZXQJ(ea).

This is an # vector in C™.

Let m > n, and let M be an oriented manifold of real dimension » with locally finite variations embed-
ded in C™. In [2], the following measure on the manifold M (which is embedded in R?” in the case under
consideration), the values of which are real n vectors was defined as follows:

MM(E) = Z“a(E)eOH EE iRM’

where p,(FE) is the oriented measure of the a.-projection of £ and R, is the d-ring of measurable subsets
of M; recall that (see [2, Section 4, definition after Lemma 9])

Ry = {Ec M|E e MU, ~ Ay, ne(E) and p,(E) are finite for any oc}.
Here, %I; and %, are c-algebras on which the measures u; and p, , respectively, are defined.

Definition 1. We define the complex n vector measure of a set £ belonging to the d-ring ‘R, as the com-
plex n vector

iu(E) = J(uu(E)) = D po(E)J(e,).

Obviously, in this formula, we can only consider the sum over those o for which J(e,) # 0; then, P(a) =
B={k, ... k,}, 1 <k, <..<k,<m. Below, we always use the notation

o="{jj,...J.}, wherej,,...j, e N, 1<j,<..<j,<2m,
B=1{k,,..k,}, wherek, ..k, eN, 1<k <..<k,<m.

Consider all a such that P(a) = B for fixed . We have (see (1)) J(e,) = iq(“)éﬁ , and the sum breaks into
three groups of summands as follows:

Ru(E) = Z[ > f"““ua(E)jéB = > Bp(B)ep, 2)
B "Pla)=p B
where § = {k,, ..., k,}, 1 <k <...<k,<m,and

Bp(E) = > i"“uy(E) (3)
P(a) =P
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36 POTEPUN

is the complex measure of the projection of the set £ on the subspace of C” generated by the vectors

ekl, . ek”.

In the case n = m, the space of complex » vectors is one-dimensional (§ = {1, 2, ..., m} is the only pos-
sibility) and, therefore,

Wy (E) = [ z iq(m)ua(E)]Z’1 A AE,.

P(o)={1,2,...,m}

In this case, instead of the n vector measure [1,,, we can consider the measure on R, the values of
which are complex numbers defined as

An(E) = B (B) = > i"ug(B).
P(a) = {1,2,...,m}
Asis known [4, Chapter 1, Section 3], given an additive vector function m defined on the ring R of sub-
sets of a set 7'and taking values in a normed space X, its variation is defined as

lia) = s 3 o)

k=1

p
(U4, c A, the A, belong to R and are disjointed}

k=1

(here, ||m(A,)| is the norm of m(4,) in the space X). A vector function m is said to have finite variations if
|m|(A) < o for any 4 € ‘R.

Lemma 1. The measures iz and W, have finite variations.

Proof. (1) Suppose that 4 € R,,, U‘Z _ 1Ak c A, and the A, belong to R, and are disjoint. Then (see
(3,

T 4] <

z|nB(Ak>|=2 Z 3 a4y

k=1 k=1lP(a) = k=1P(a) =B

=3y \uz<Ak)—u;<Ak>\sz 3 [wa0 + pa4y)
k=1Pa)=p k=1P(a)=p
=y (zuummzuam) S () + g (4)).
Po)=p k=1 P(o) = p

Since 4 € R,,, it follows that the numbers u; (A) and p,, (A) are finite and

figl(4) = sup{zmﬁmk)\}s S (H(A) + pg(A)) <o,
k=1 P(a) =P

(2) The space of n vectors in C” is finite-dimensional; therefore, all norms in this space are equivalent,
and we can consider an arbitrary norm

ELM(Ak) = z ﬁﬁ(Ak)Eﬁ-
p

The properties of the norm imply

S iAol = 3 S o) - ol < zmaxueﬁnzmﬁmkn

k=1 B

<maX||eB||Z[z |“B(Ak)|J <max||eﬁ||z z (Lo(A) + g (A))  (seeitem (1)).

p B Pla)=p
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COMPLEX VECTOR MEASURE AND INTEGRAL OVER MANIFOLDS 37

Hence,

p
ude) = o] T a0l <msnfal S S i)+ a <. o
k=1 P B Pla)=p
Theorem 1. Let M be an oriented manifold of real dimension n smoothly embedded in C" (m > n), and let
E c U=f(R"), where f is a positive parameterization (a C' diffeomorphism) of a neighborhood U = M and

Ee ma(%; N A,) . Then, the set f~\(E) is Lebesgue measurable and, for each B = {k,, ..., k,},

E e R, implies fiy(E) = I detfsd,,

v
Ee MUy A implies |fig(E) = I |det f3] L,
* 77E
Here, if

o %

ot, ot, ot

{1 = X +iy1 = fl(tl’ LR tn)ﬁ af2 afz 8f2
f: s and fv - a_tl a_tz cee a_tn ,

zm = xm+iym = fm(tla LRXY} tn)? ‘. :

Doy S D

ot, o, ' ot,
then detfﬁ' is the determinant of matrix composed of the rows of ' with numbers k, ..., k,,.

Proof. (1) Let us write the coordinate functions of the mapping fin real form:

xp =&t .o ty),

1= &, 1),

fiqd » o Le, fi =81+ gy
Xm = &m-1(t, s 1),

Y = Gam(tis oo ty),

According to Theorem 2 of [3], the set f/~!(E) is Lebesgue measurable and, as shown in the proof of the
same theorem (the end of item 3.3), we have

W, (E) = no(E) = I detg, dA,,.

17E)
Thus, it follows from (3) that
gl (E) = Z " (E) = I z i"“detg, dn,. (4)
P(a) =P 7P =B
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38 POTEPUN

We have

afkl afkl afk, agzqu .agzk1 6g2k1—1 .agzkl
- +i +i

ot, o, ot o, ot, o, ot
5fk2 asz Gsz angz—l .agzk2 agzkz—l .6g2k2

v == = ... = | _ +1 +1
detfy =| o1, or, o1, |=| o ot or, or,

afk” afkn Uk agzkn—l .agzk” ang”—l .agzkn
— +i +i

or, o, o, o, o, o, or,
082k, -1 082, -1 08, 08,
ot o ot, ot o ot,
a82k2—1 ag2k2—l angz—l + l.agzk2 angz—l + i6g2k2
= ot ot, i o o, = o, ot,
angn—l .angn ang,,—l .angn agzknq .agzk” agzk”—l .angn
+1 ... +1 +1 ... +1
ot, ot, ot, ot, ot, ot ot, ot,

Performing this procedure for each row of the initial determinant, which is the sum of the row of partial
derivatives of g, k-1 and the row of partial derivatives of g, k, multiplied by i, we obtain

2%, 2%, 2%, o
det fy = Z z Z {10 ""/”)detgj"b i = Z i"“detg.,
=2k =1 jy =2k =1 j,=2k,—1 P(a)=p
where g(a) is the number of even indices in the set a = {j,, ..., j,}; thus (see (4)),

fg(E) = I det f3d.,.
(o)
(2.1) Suppose that Ui - E, cFEandE € M, (9[; M A,) , where the E, belong to R, and are disjoint.
It follows from item (1) that

p

Ylap(E) = Y| [ detfydr, <3 [ [detsy
k=1

k:]ffl(E,() k:1f7](Ek)

dr,

= j |det f|dh, < j|detfﬁ'|dxn.
O s

By the definition of variation, we have

¥/
|ip|(E) = Sup{z |FL[3(E/<)|}S _[ |detf[3'|d7"n' (5)
k=t £
(2.2) Suppose that E € R,,and E = K = U, where K is compact. Then f~!(K) is compact as well (fis a
homeomorphism of R” onto U) and the continuous function det fB' is uniformly continuous onf~!(X), i.e.,

Ve>0 38>0:V41ef (K) |t—1|<8=|detfy(r)—detfs() <e. (6)
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COMPLEX VECTOR MEASURE AND INTEGRAL OVER MANIFOLDS 39

Consider the cover of f~!(K) by open balls of diameter & and choose its finite subcover: f~'(K) Ui - B,.

It easily follows from K c U = f(R") that K = f(f~'(K)) c Ui - f(B,) . The mapping fis a homeomor-

phism of R” and U; therefore, the sets f(B,) are open in the open neighborhood U = M and, hence, in M,
i.e., they are a*-measurable for any o = {j|, ..., j,} (see [2, Section 4, Lemma 8]). A similar argument
proves the measurability of o™~ (see [2, Section 4, remark after Lemma 9]); thus,

f(B) e MU A= EnfiB) e M(Ay N A,

Lo (ENA(BY)) < pg(E) <o,  p (ENf(By)) < pg(E) <o,
i.e., ENf(By) € R, We set
k-1
E = Enf(B), E.=(EnfBOINJ(ENSAB)), for k=2 ..p.
s=1
It is easy to verify that the sets E; are disjointed, £ = UZ - E, and, based on the properties of a ring of

sets, all values of E) belong to R,,. The mapping fis injective; therefore, f~'(f(B,)) = B, from which we
have

F(E)f (EnfBY)cf (E) N B, B, = diam(f ' (E,))
<3=(see (6)) Vi1, € E, |detfy(r)—detfy(t) <e

= |det f3(£)] < |det £ (1,)| + |det 5 (£) — det £ (1,)] < & + |det fi(,)].
Moreover, the sets f~'(E}) are Lebesgue measurable (see [3, Theorem 2]). Thus, for fixed ¢, € E,, we obtain

(Ndh, <& L,(f " (EQ) + |det £(10)] - &, (f ' (E)))

I |det £;

I (EY

= & 1,0/ (ED) +]det i) -, (ED)] = e LT ED | [ det g,

(B

=& -0, (E))+ j det f3()d\,, + I (det f3(#,) — det £3(1))d,

rED FNEY

<e-M(f(E))+ J‘detfﬁ'(t)d},n+ '[|detf£;(tk)—detf[§(t)|dkn

(B r(EY

<e b EN+| [ detfi(Ddh,| +e 2T (ED)
(B
= 2¢- kn(f’l(Ek)) +|0(Ey)|  (seeitem (1)).
Since the sets E, are disjointed and E = Ui ) 1Ek , it follows that the sets f~!(E}) are disjoint as well and

JUE) =\, _ 1fﬁl(E,c) . As a result, we obtain

p
I|detf[; (0, =Y I |det f;
77 k=1

<2e-M,(f T (E)) + |lig|(E)  (by the definition of the variation of a measure),

(O, <26 > 1, (f T (ED) + . [Re(E)
k=1

k=1
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40 POTEPUN

ie., I|detf[;|(t)dkn£2s-x,,(f_l(E))+|ﬁB|(E). (7

77
We have f~!(F) — f~!(K), and the set /~!(K) is compact; therefore, A,,(f~'(E)) < oo. Passing to the limit as
g — 0in (7), we obtain

. _ see (5) '
j |det f3] () dh, < |Ea(E)| = j |det f£;
() 17(E)
(2.3) Let C, = Hjn: 1 [-k; k]; then R” = \U;_,Ci and U=fR = \U;_ ACy). For any E €

(Ddh, = [/ (E).

ﬁa(%[; N2, Ec U, we set

k-1
E, = Enf(C), E,=(ENACONJENAC)), fork=2,3,...

s=1

It is easy to verify that the E, are disjoint and £ = U/O:: ' E, . The mapping fis a homeomorphism; there-

fore, the sets f(C,) are compact and, by Theorem 6 of [2, Section 4], f(C,) € R, M, (%I:; n A,) . Prop-
erties of a g-algebra imply

f(C) € ﬂ@[l NA)=E, € ﬂ(%l N AL,

Ho(E) < pa(fIC)) <o,  pa(E) < pa(fCy)) < oo,
i.e., all £, belong to R,,. Since i is countably additive, it follows that the variation |[ig | is as well (see [4,
Chapter 1, Section 3]). From the inclusions £, € f(C,) and item (2.2), we conclude that

Bl(B) = D [Fl(ED) = > j |det £ (A, = j |det f3 (. ®
k=1

k=1r10ky Y05

Definition 2. Let m > n, and let M be an oriented n-manifold in C” with locally finite variations. A func-
tion ® : M x (C")" — C is called a step differential n-form on M if there exist finite families of sets
{E.}_,, E. € Ry, and exterior n-forms {¢,}" _, over the field C such that

)
o = Z Oxxe,  (xg, denotes the characteristic function of the set £).
k=1

Since ‘R,,is a 8-ring, we can assume that the sets £ are disjoint [4, Chapter 2, Section 6, Subsection 1].

As is known [5, Chapter 3, Section 5, note], the exterior n-form ¢ generates a C-linear functional ¢
on the space of n vectors, which is defined at the basis n vectors by

(Np(éiI A Eiz A A Ein) = (p(é,»l, Ei2, ooy Ei”). ®)
Therefore, we can define the integral of a step differential form with respect to the vector measure [1,, as
follows [4, Chapter 2, Section 7, Subsection 1]:

P P
if 0= Q. then [odiy = Y ouf(E)- ©)
k=1 k=1
Defining the integral of not necessarily step differential forms requires that the vector measure have
additional properties. In the spaces of exterior n-forms and # vectors, the dual norms of any exterior #n-

form @ and n vector v satisfy the inequality ||@ (v)|| < ||@|| - ||v]| (¢ is the linear functional corresponding
to the form ¢). Moreover, R, is a §-ring, and the measure [1,, has finite variation. Thus, we can use the
theory of integration of vector functions with respect to vector measures (see [4, Chapter 2, Section §]).
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COMPLEX VECTOR MEASURE AND INTEGRAL OVER MANIFOLDS 41

The following definition is a reformulation of a general definition given in [4] for differential forms and
the measure [1,,.

Definition 3. Let M be an oriented real n-dimensional manifold with locally finite variations embedded
in C” (m > n). The differential form o is as follows: M x (C”)" — C is said to be p1,,-integrable if there

is a sequence {w,},_, of step differential forms such that
(1) {o},_, isa Cauchy sequence, i.e., lim I||0)k - o/du, =0.
k, [ — o

(2) The w, converge to ® almost everywhere with respect to the measure |, |.

In this case, we set
jmdgM = lim IwkdﬂM.
k— o0
IfdA e M, (%[; M 2,) and the differential form o - y , is integrable, then the form o is said to be integrable

on the set A4, and its integral is defined as j odp,, = J.(DXAdﬁM.
A

Theorem 2. Suppose that M is an oriented n-manifold in C™ with locally finite variations, a set K = M is
compact, and the restriction ®|y of a differential form @ is continuous on K. Then, o is integrable on K.

The proof of this theorem is a word-for-word repetition of that of Theorem 7 in [2] (with |u,,] replaced
by | l:lM ).

Theorem 3. Let M be an oriented manifold of real dimension n smoothly embedded in C" (m > n). Then,
(1) M is a manifold with locally finite variations;

(2) If Ec U=f(R"), where f is a positive parameterization (a C' diffeomorphism) of a neighborhood U <
M, and E is small and o"- and o."-measurable for all o. = {i,, ..., i}, then f~'(F) is Lebesgue measurable;

(3) If a differential form »(z) = ay(z)dzg is integrable on E with respect to the measure 11, then
B B
B

IoodftM = j > (a2 f) - det fydh,. (*)
E e P
Proof. Assertions (1) and (2) were proved in [3, Theorem 2, items 1 and 2]. Let us prove (¥).

(1) Suppose that Ec U=f(R"), E € R, and o = dzk1 A A den (a constant differential form). Let
us show that

joadgM = j detfydh,, B = (ki ..., k,}.

£ 77(E)
By the definition of the integral of a step differential form, we have

J.(Ddl]M = J‘(DXEdl]M = o(uu(E)).

Since the functional ¢ is C-linear, it follows that (see (2))

(b(gM(E)) = za[}(E)&)(eB)s B = {jlv A in}ﬂ ISll <... <inSm. (10)
p

According to (2), we have

(f)(éj] A Ejz A A Ejn) = (p(éjl, Ejz, cee Ej") = (dg Ao A a’zk”)(éjl, Ejz, cees Ejn).

VESTNIK ST. PETERSBURG UNIVERSITY. MATHEMATICS  Vol. 49  No. 1 2016



42 POTEPUN

Based on a lemma similar to Lemma 2 in [1, Vol. 3, Chapter 2, Section 2] (for an exterior form over C),
it follows that

~ ~ ~ 1 lf j,-.-,jn = k""7kn )
(dz A ..ondzi )(e, e, .08 ) = { Ui = 1k, }

O lf {j13~--’jn}¢{kla“-,kn}

(here, k, <k, <..<k,andj, <j, <...<j,). Therefore, only one summand in (10) is nonzero. We obtain

[odity = 0((E)) = fiy, ..oy (E) = [ detfydh, (by Theorem ).
E 7B

(2) Suppose that Ec U=f(R"), E€ M (A, N 2A,), and o is a step differential form. For this form,
let us prove (¥).

We have o = Zp QX g, » Where the ¢, are constant differential forms and all £ belong to the ring
1

R, Hence,
p p
+ _
®,, = Z(PkXEk’XE = Z(kaEkmEv (ExnE) e N(Ag 0 Ay),
k=1 k=1 @

and g (E, N E)<pg(E) <o, P (E N E)<u(E)<w, ie., ENE €Ry,

and the form ©,, is step, too. Therefore, without a loss of generality, we can assume that ® = ©,, -

Thus, we have ® = Zp OrXE, > where the sets E, can be assumed to be disjointed (see [4, Chapter 2,
k=1

Section 6, Subsection 1]) and E, c E. Let ¢, = ZB agdz; A ... A dz; s then, for z € E, we have o(z) =
p
Z aBkdz,-l A..Andz; ,and forz e E\(U Ekj , we have ®(z) = 0. Therefore,
B ! k=1

ag, if z € Ey,

if o(z) = Zﬁ:aﬁkdzi'/\ ...Adz, then ay(z) = 0 if ze E\(QE,C).

k=1

The linearity of integral and the result obtained for the form dz; A ... A dz; imply

I@kxEkdﬁM = I(Zaﬁkdzil Ao A a’z,-J dpy, = Zaﬁk J.(dz,-l A A dz,»n)dﬁM

E B B Ey
= zaﬁk j det fyd\, = j (Zagkdetf[{Jdk,,;
N ey P

the integrand is continuous because f € CV(R").

Ift € f1(Ey), then f(1) € E,, i.e., ag(f(£)) = ap. In this case,
p p »
I(Ddl:lM = I(Z (PkXEkjdfiM = z J.(PkXEkdﬁM = Z I (Zaﬁ(f(t)) . detfﬁ']d}\‘n‘
E

k=1 k=1 k=lpagp) B
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COMPLEX VECTOR MEASURE AND INTEGRAL OVER MANIFOLDS 43

If ¢ ef*l(E)\(C)ffl(Ek)) = f_l(E\C) Ek) , then ag(f(7)) = 0 for all B. Using the disjointedness of the
k=1 k=1

sets f~(E}), we obtain

> J‘(zag(f(t))detfgjdkn. = j (Zaﬁ(f(r))detfﬁ'jdxn
=ty P

C)f"(Ek) P
+ J. (Zaﬁ(f(t))detfﬁ'] d}‘n = J‘ [Z(a[g Of)detff)‘} (D\‘n’
e e e P

k=1

which proves (*) for step differential forms. Note that the integrand function is continuous on the Leb-
esgue measurable sets f~!(E,) and f~'(E)\ mz _ If_1 (Ex);i.e., it is Lebesgue measurable.

(3) Let o be a differential form integrable on £ < U = f(R”). Then, by definition, there is a
sequence { ® k}fz , of step forms such that o,(z) — ®(z) almost everywhere with respect to the measure

|l |- Since the space of exterior forms is finite-dimensional, the convergence ,(z) —= »(z) is equivalent

to coordinatewise convergence in any basis. This means that, if o, (z) = Zﬁaﬁk(z)dzﬁ and o(z) =

Zﬁ ap(z)dzg , then, for any B, we have ag(z) — ap(2) | I,/ | almost everywhere. Let us prove that the func-
tions ag, (f(7))det fﬁ' (#) converge to ap(f(7))det fﬁ' (¢) almost everywhere with respect to the Lebesgue mea-
sure on R”.
Let £, = {z € Elap(z) +~ ap(2)}; then, Ej € Ry and [y, |[(Ep) = 0.
Let Py = {t € R"|ap (f(1))det f; (1) -+~ ap(f(n))det f; (1)}. Then,
t € Py ap(f() + ap(f(1)) and detfy () #0
S f(f) € Ey and detf, () #0 <t e f71(Ey) N {t € Rr|det f; (1) #0}.

Since Eg € Ry, it follows that the set f‘l(Eﬁ) is Lebesgue measurable (by Theorem 1). The function

det fB' (7) is continuous and, therefore, Lebesgue measurable; hence, the set {r € R”|det fﬁ' () # 0} is mea-
surable as well. We have proved that

Py =f""(Ep) N {t € Rr|det f; (r) # 0}  is measurable.

Using the definition of the variations in the measure, we have

() = sup{znmwk)n

k=1

P
\U Ei © E, the E, belong to R, and are disjoint} = 0.

k=1

It follows that, forany E'  Eg, E' € R, we must have i, (E)=0;thus, i g (E') =0 for any B, from which
we have |[i; |(Ep) = 0. Based on Theorem 1,

gl (Bp) = [ ldetfilan, = [ldetfilan,+ [ |detfildn,.
(E Py I (E\P,

Since det fB' = 0 outside the set P, as required, we have

Agl(Ep) = [ldetfldn, = 0. on Py, |detf

Py

>0 = L,(Pg) =0.
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As noted at the end of the proof of item (2), all functions ag,(f(7))det fB' (#) are measurable. Since
ap (f(D)det fy (1) — ap(f(1))det f; (1) almost everywhere, it follows that the functions (ag ° f)detf; and
|(ap ° Hdet fy — (ap ° f)det f; | are Lebesgue measurable on f~'(E).

(4) Let us prove that J.E|aﬁk_af5|dlﬁﬁ| = I | ((ag © )= (ag ° )| - |det fi|dr, .
[ (E)

The function ag, is step and measurable with respect to the c-algebra M, (9[:; ~A,),and ap(z) —
ap(z) almost everywhere with respect to the measure |1y, | (defined on the same c-algebra); therefore, the

ag and |ag, — ap| are measurable as well. The measure |[ig| is defined on (‘\P(a)zﬁ(?l;m A o

ma(%; M A,) ; hence, the integral I |lag, — ap|d|iy] makes sense.
E

If 4 is a step functionand 2 = Zp ¢ xg » where all ¢;> 0 are nonnegative, all E; are disjoint and belong
i=1 !

to the c-algebra M, (91; N A, and E= Uf: 1E ;, then, according to Theorem 1, we have

Jhd|ﬁﬁ| = Zci|ﬁﬁ|(Ei) = ZLQ _[ |detf[£|dln]

i=1 i=1 fﬁl(E,-)

=Y | ra)ldetsi@ldn, = [ h(fn)ldet fi(n)lan,

=l £
(because f(1) € E; = h(f(t)) = c;fort € f~'(E)).
The nonnegative function |ag, — ag| on E, which is measurable with respect to all of the measures ™

and L, , is the limit of an increasing sequence of nonnegative step functions, i.e.,
Vie B 0<h(2)<h, (z), h(2)— lap(2) —ag(@)| (G — )

(we can set h(z) = K if & <lag(z) — ap(2)] < l%l , where k is an integer, k <j - 2/, and h(z) =j if

lag(z) — ap(z)| 2)). All properties of the sequence {4; };O: , are easy to verify. Obviously, we have
Vief(E) 0<h(f()detf; (0] < hy(fn)ldetf; ()] < ...,
h(f(O)ldet fy ()] —= lag(f(D) — ag(f(1))| - |det f ()]

passing to the limit in the relation I hdng| = I (h;° f)|det f[3'|d7»n and applying Levi’s monotone
E /(E)

convergence theorem, we obtain
ﬁask—agldlﬁsl = j (agi °) - (ag © )] - |det f;] dn.,.
E &)

(5) Let g () = ZB ap, (f(1))det f3 (1), and let g(r) = zﬁaﬁ(f(t))detfﬁ'(t) . The functions (ag © f)det f;

are Lebesgue measurable (by item (3)); therefore, so is g. By the remark to item (2), the functions g, are
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measurable; hence, |g, — g| is measurable and nonnegative, i.e., the integral I ] g, — g|d\,, makes sense.
f(E)
Let us prove that I g, — gld\, — 0 as k — co. We have
7E)
[ le—gldn, = [ |3 (ag o Ndetfy = (ag ° Hdet filan,

7B ey P P

Sz J‘ |(ape © )= (ag ° )] - |det f5] dn,.
P e
According to item (4),

> _[ [(agi °) = (ag © )| - |det fildh, = > _ﬂ%k— ag|d|iy.
P PE
By the definition of the measure [1,,, forany 4 € R,,, Ky (A) is a coordinate of the n vector I, (A) in the

basis {Eﬁ }. Since the mapping taking each »n vector to its coordinate is linear and continuous in any norm
on the space of n vectors (which is finite-dimensional), it follows that there is a constant C; > 0 such that
B | <Gl 1, (A)|| for any B and any A € R,,. Using the definition of the variation of a measure, we can

easily check that |fig [(4) < C)| Ly |(A) forany A4 € ma(sl[; N A,), from which we have

> I|aﬁk—aﬁ|d|ﬁﬁ| <G IZ|“B/<_ ag|dlpy-
P E EB

Note that ag,(z) — ag(z) is a coefficient of the exterior form w,(z) — (z). The mapping taking each exterior
form to the set of its coefficients is linear and continuous (the spaces of exterior forms and of coefficients
are finite-dimensional). The sum of the absolute values of coordinates of a vector is a norm on a finite-
dimensional space; therefore, for any norm in the space of exterior forms, there is a constant C, > 0 such

that, for any exterior form ¢ = z agdzy , we have Z lag| < Cylo|l; in particular,
B B

Z ’aﬁk(z) - aﬁ(Z)| < CzH(Dk(Z) - (D(Z)H
B
The space of integrable differential forms is linear [4, Chapter 2, Section 8, Subsection 1, Proposition 1];
therefore, , — o is integrable on E with respect to the measure [1,,, and ||o, — o|| is integrable with respect

to |1, | [4, Chapter 2, Section 8, Subsection 1, Proposition 4]. Thus,

JZ|aBk - aB| d|]1M| <G, I||®k - (9” d|]1M|
E B E

Using the preceding inequalities in this item, we obtain

I |gk_g|d7\‘ngz I |(aﬁkof)—(a[3 °f)||detfﬁ'

7B B

dn,

= ﬂ%k‘ agldlng| < C, Jz|aﬁk_ agldlpy| < C,C, I”‘Dr of[dlpy.
E B E

B E
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This inequality implies that the function g is Lebesgue integrable on f~!(E). Since {® k}f: , is a Cauchy

sequence and ®;(z) — ®(z) ||1,,| almost everywhere, it follows that [4, Chapter 2, Section 8, item 2,
Proposition 12]

flos—oldid —0, [ lg—gldn, — 0.

£ 77
Therefore,

[ edr, = [ (agopdetfyar, = lim [ g, = lim fo,diny = [odi,,
E

7B 17(E) 7B £
(according to item (2) for step forms ®, and the definition of the integral of the form ®). @
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