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Abstract—The paper discusses the impact of the material properties of transversely isotropic circular
plates on its natural frequencies. Two refined theories of plates have been used to analyze the free vibra�
tion behavior of homogeneous plates. Both theories take into account normal and rotary inertias. Fun�
damental frequencies for plates with radial inhomogeneity have been obtained with the help of finite
element package Comsol Multiphysics 5.0. It has been shown that the inhomogeneity of the plate have
a profound impact on the first (lowest) frequency of the plate, while the plate orthotropy has a greater
influence on the second and higher vibration mode [2] (Fig. 1, Table 1).
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1. INTRODUCTION

In the present paper, the problem of determining the natural frequencies of a transversely isotropic cir�
cular plate is considered and the impact of the material properties of the plate on its natural frequencies is
studied. The classical Kirchhoff–Love (KL) theory only takes into account the material properties of the
midplane, which is why the fundamental frequencies for isotropic and transversely isotropic plates are
equal with respect to the classical theory. The Ambartsumyan theory of anisotropic shells [1] takes into
account the impact of the shear deformation in the thickness direction on the stress–strain state of the
plate. In the general case, the theory of anisotropic plates and shells developed by Rodionova, Titaev, and
Chernykh [2] permits one to take into account not only the transverse shears, but also the deformation of
normals to the midplane. In the present paper, the problem of determining the fundamental frequencies
is solved with respect to the theories [1] and [2], which improve the KL theory. To study the impact of the
radial inhomogeneity on the plate fundamental frequencies, the calculations are carried out using the
Comsol Multiphysics 5.0 finite element package.

2. STATEMENT OF THE PROBLEM

The problem of determining the natural frequencies of a transversely isotropic circular plate with radius
R and thickness h is considered. The material of the plate obeys Hooke’s law [2], assuming the plate mid�
plane to be the plane of isotropy as follows:

(1)

where

Here, Ei, (i = r, θ, z) is the Young moduli in the ith directions; (r, θ, z) is the introduced cylindrical coor�
dinate system, Gij is the shear modulus in (i–j) plane, νij is Poisson’s ratio. For a transversely isotropic
plate, G12 = E1/2(1 + ν12) and G13 = G23.

1 The article was translated by the authors.
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The system of equations of motion for a transversely isotropic plate of the Ambartsumyan refined the�
ory [1] is written as follows:

(2)

where

Here, w is the normal displacement, F is the function related to the normal displacement and the shear

strain resultants, Δ is the Laplace operator, ρ is the density of the plate material; and D = E1h
3/12(1 – )

is the bending stiffness of the plate.
The characteristic equation for determining the natural frequencies of a clamped plate takes the form

(3)

and the natural frequencies are connected with the roots λn, m of Eq. (3) by the relation

Here, Jn, In are Bessel functions and n, m are the number of nodal diameters and circles, respectively.
An equation of the classical Kirchhoff–Love (KL) theory, which describes the motion of the plate, and

the corresponding characteristic equation can be obtained from (2) and (3) by assuming κ = 0 and passing
to the limit δ → ∞.

3. VIBRATIONS WITH THE RODIONOVA–TIATEV–CHERNYKH THEORY

In general, the theory of anisotropic plates and shells developed by Rodionova, Titaev, and Chernykh
(RTC) [2] permits one to take into account the deformation of normals to the midplane. When construct�
ing the theory, it is assumed that the transverse tangential stresses are distributed along the thickness of the
shell according to the quadratic law, and the normal stresses are distributed according to the cubic law of
the z coordinate. In the present paper, we consider the problem of free vibrations based on theory
described in [2] by taking into account only the transverse shear.

When there is no external surface forces, the vector�matrix equation of motion taking into account the
normal inertia forces and the inertia of rotation has the form 

(4)

where V = (w*(r, θ, t), (r, θ, t), (r, θ, t)) is the sought vector�function and, in the square matrices Aij,
the following elements are distinct from zero:
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After the separation of the variables w* = Wn(r)cos(nθ)cos(ωt),  = g1n(r)cos(nθ)cos(ωt),  =
g2n(r)sin(nθ)sin(ωt), system (4) can be traced to

(5)

where Y = (Wn, g1n, g2n, , , ), A(ω2) is the 6 × 6 matrix, ( )' = ( ).

The solution of system (5) can be represented as follows:

(6)

Here, λi are the eigenvalues, L is the matrix composed of eigenvectors of the matrix A(ω2), and C is a vector
of arbitrary constants. After the substitution of (6) into the corresponding boundary conditions, one can
derive the equation for determination of natural frequencies ωn, m from the condition for a nontrivial solu�
tion of system (5).

4. RESULTS

The table presents the normalized fundamental frequencies parameters of the homogeneous plate

= λn, m/ , which is computed using two refined theories [1], [2] and with the help of the finite�
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element method (FEM) in Comsol Multiphysics 5.0. software. Indexes KL, A, RTC, and FEM correspond
to the values obtained by the classical KL theory, the Ambarsumyan theory, the refined RTC theory, and
by FEM, respectively. It can be seen that the transverse isotropy impacts more influences on higher fre�
quencies.

Fundamental frequencies of the inhomogeneous plate are calculated in the software package Comsol
Multiphysics 5.0. It has been supposed that the in�plane modulus of elasticity changes from the center to
the edge of the plate as E1 = E10f(r), where f(r) is a fairly differentiable positive function. When performing
the calculations, the parameter E10 is taken to keep the average value of the elastic modulus Eav constant

In the figure, based on the example of the first three (lowest) frequencies, the impact of the plate mate�
rial properties on its natural frequencies is reported. It is assumed that the in�plane Young modulus varies
linearly as E1 = E10(1 + qr/R), and its average value is ten times greater than the Young modulus in the
direction of the thickness. For an inhomogeneous plate, frequency parameters λ1, 0 and λ2, 0 differ from the
corresponding frequencies of the homogeneous plate (q = 0) by at most 7%, while for the first (lowest) fre�
quency λ0,0, the difference is greater than 10%.

5. CONCLUSIONS

The results have shown that the difference in the tangential and normal elastic moduli influences more
the second and higher vibration modes. The inhomogeneity of the plate has a significant impact on the
first (lowest) frequency of the plate.
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