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Abstract—Nonlinear dynamics, physical processes, and information processing in selective spiking neurons
are investigated. Summation of pulse inputs are considered on the basis of the theory of quasi-periodic func-
tions and nonlinear transformation via relaxation of the self-oscillating system of a neuron. A way of encoding
input information is also considered in which the information unit is a pulse sequence, and the intensity of
the input signal is encoded by a synchronous change in the frequency of the pulse sequences.

DOI: 10.3103/S1062873818110163

INTRODUCTION
The nonlinear dynamics of electrical processes and

information processing in spiking neurons (SNs) and
artificial spiking neural networks (SNNs) is closest to
real biological processes in biological neuron and bio-
logical neural networks. However, the dynamics of the
processes in SNs and SNNs, along with ways of pro-
cessing information, have yet to be adequately studied.
The main applications of neural networks are cur-
rently recognition, control, and simulation of artificial
intelligence. Most of these applications employ neural
networks with McCulloch–Pitts neurons that use
binary input signals. The most important distinction
that radically alters the principle and efficiency of the
system is different signaling in artificial neural net-
works and in the biological network of neurons. The
problem is that neurons in artificial neural networks
(ANNs) transmit values   that are real (i.e., num-
bers). Information is transmitted in the human brain
via pulses with fixed amplitude.

The basic operations performed in binary ANNs
are the summation of input signals with certain
weights in McCulloch–Pitts neurons, clustering and
summation of input signals in selective neurons, pro-
cessing by a nonlinear element in McCulloch–Pitts
neurons, and the generation of self-oscillation in the
form of a single pulse or a series of pulses in a spiking
neuron or a selective neuron. Input information is
dynamically processed simultaneously in all ANNs by
means of specific encoding, along with the compres-
sion of information with minimal loss.

Nonlinear dynamic systems of spiking neurons and
neural networks are best suited to real biological sys-
tems and are promising in applications. Two import-

ant features of a spiking neuron should be noted:
(1) The summation of the input pulse sequences in the
SN differs greatly from that of binary sequences in
binary neurons. (2) The nonlinear part of an SN is an
impulse self-oscillatory system. This system can be
potentially self-oscillating and generate one response
pulse at its output in response to an input pulse. A
periodic sequence of pulses or bursts can be generated
[1–3].

The aim of work was to study the physical sense of
the dynamics of electrical processes in a neuron as an
information system that performs complex dynamic
information processing.

SELECTIVE NEURONS 
AND NEURAL NETWORKS

Artificial McCulloch–Pitts neurons are used in all
known neural networks. Learning is achieved in such
neural networks by selecting weighting coefficients.
However, real neural networks do not contain weight-
ing coefficients. In addition, calculations of weighting
coefficients using iterative procedures are fairly com-
plicated and time-consuming. We therefore use the
selective neurons and selective neural networks
described in [4, 5] and patents [6–9]. Selectivity is
achieved in selective neurons and selective neural net-
works through the selective clustering of communica-
tion channels and not by selecting weight coefficients,
as in the familiar neural networks based on the use of
McCulloch–Pitts neurons. Selectivity is achieved in
biological neurons (dendrites) via the information
properties of input signals; i.e., clustering is ensured by
adjusting the input signals according to the code
sequences. Selective properties can be achieved in
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Fig. 1. Structure of mathematical models of neurons. A McCulloch–Pitts neuron is on the left; a selective neuron is on the right.
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neural networks that operate on both binary input sig-
nals and impulse (spike) input signals. The structure of
the selective neuron proposed in [6–9] is shown on the
right side of Fig. 1. The structure of a McCulloch–
Pitts neuron is shown on the left side of Fig. 1 for com-
parison.

Figure 1 uses notation in which 
 are the input signals and weight coeffi-

cients of a McCulloch–Pitts neuron; n is the number
of input signals; CC is the communication channels
(dendrites);  is an adder; F is the nonlinear threshold
function in a McCulloch–Pitts neuron;  is the
relaxation self-oscillating system in a selective pulsed
neuron; and C is a cluster of communication channels.
Some input signals in the selective neuron are blocked
during the formation of clusters.

Let us consider a mathematical model of artificial
neurons. Output response

is obtained after passing through the threshold device
and converting threshold function  in a McCull-
och–Pitts neuron. Here,  is the number of neuron
inputs and  is the excitation threshold. The output
response for a selective neuron is

where  are the numbers of the communication
channels belonging to selective cluster K;  is a
nonlinear operator that characterizes the relaxation
self-oscillating system of a selective spiking neuron.

Selective neurons are used in the proposed mathe-
matical model of a selective neural network (a single-
layer perceptron). The selective neural network is
shown on the right side of Fig. 2. The familiar model
of a Rosenbluth perceptron in which McCulloch–
Pitts neurons are used is shown on the left side of
Fig. 2 for comparison.
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ROLE OF SYNAPSES IN THE SUMMATION 
OF PULSED STREAMS

Pulsed streams enter a neuron directly from den-
drites due to the connection between their biological
membranes; i.e., there is a common biological mem-
brane for dendrites. Another part of the pulsed streams
enters the neuron’s soma through synapses connecting
the dendrites to the neuron’s soma. Synapses serve as
transducers of the electrical potential of the dendrites
into a chemical mediator with subsequent summation
in the neuron’s soma. They protect the weak electrical
potentials of the dendrites from the potential effects
that arise in the trigger zone near an axon.

The temporal electrical constant of synapses under
the action of neural pulses should be on the order of
1/ms. Only this condition can ensure that the pulsed
streams entering the neuron input are in most cases
summed in an almost noninertial manner. Some of the
pulsed streams enter the neuron’s soma directly from
the dendrites; others come through the synapses con-
necting the dendrite to the neuron’s soma. The elec-
trical potentials of pulsed streams after their chemical
transformation by synapses are summed in the neu-
ron’s soma [1–3]. The synapses themselves thus do
not actually participate in the summation of pulsed
streams; instead, they protect the weak electrical
potentials of the dendrites from the action of the
strong potential that arises in the trigger zone of the
soma near an axon. The main role of synapses is there-
fore to form one-way pulsed streams in neural net-
works.

SUMMING OF INPUT PULSE SEQUENCES
A feature of summation is that the time position of

the pulses may not coincide for sequences of short
pulses with different periods. When this happens,
amplitudes do not add up. For example, there is no
summation of amplitudes even for two pulse
sequences that have identical periods of repetition but
differ in phase. The sum of pulse sequences with dif-
ferent periods is generally a uniform quasi-periodic
function, and their summation is based on the proper-
Y OF SCIENCES: PHYSICS  Vol. 82  No. 11  2018
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Fig. 2. A selective neural network; the familiar model of a Rosenbluth perceptron with McCulloch–Pitts neurons is shown on the
left for comparison. The number of recording neurons in the single-layer perceptrons on the left and the right is m.
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ties of quasi-periodic functions (QPFs). Below, we
give a definition of quasi-period  of function f(x).

Definition 1. Function  is continuous over the
real axis. According to Bohr, it is quasi-periodic if
there is a positive number  such that any seg-
ment  (where  is any real number) contains
at least one number  for which  <

 when .
Number  is referred to as quasi-period ε of

function  The class of quasi-periodic functions
was studied in the works of P. Bohl and H. Bohr. These
results were presented in [10].

According to the fundamental property of quasi-
periodic functions, there is  such that [10]

where   are the periods of
partial periodic functions; in our case, periods of par-
tial impulse sequences  with amplitudes 

 We then have quasi-period ε of function

 =  such that  There
is a maximum value of the amplitudes of impulse

functions that is equal to  and repeats with
interval Tε of quasi-period ε.

According to Kronecker’s theorem, this function
has condensations and discharges of pulses that follow
with intervals of so-called quasi-periods ε. Let us con-
sider an illustration of quasi-periods ε. Signals at the
inputs and outputs of neurons can be presented as the
sums of quasi-periodic functions, as is shown on the
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left side of Fig. 3. The total pulsed stream is shown
above the time axis on the right side of Fig. 3.

There is a maximum amplitude of the sum of the
pulses that is reached through quasi-period ε: 4А = 2,
where A is a pulse amplitude of 0.5. The pulse ampli-
tude is amplified in range  of every quasi-
period ε. We know the sum of pulses arriving from
dendrites should exceed the excitation threshold of a
neuron. A specific property of quasi-periodic func-
tions is the existence of quasi-periods ε and the maxi-
mum sum of pulses that follow with the interval of
quasi-periods ε. This allows us to selectively process
information encoded in pulsed streams, and to reduce
the redundancy of input information.

NONLINEAR BLOCK 
OF A SPIKING NEURON AS A RELAXATION 

SELF-OSCILLATING SYSTEM

The nonlinear part of an SN is a self-oscillating
system. This system can be potentially self-oscillating
and generate one response pulse, a periodic pulse
train, or clusters of pulses (bursts) in response to an
input pulse. The series of pulses in a cluster then usu-
ally have a shrinking period, but they can have approx-
imately the same period of repetition or even chaotic
dynamics. The types of responses of a nonlinear
dynamic system to input impact pulses are illustrated
in Fig. 4.

Let us consider a familiar mathematical model of a
neuron (the conceptual model of Van der Pol–
Fitzhugh [11]) to understand the excitation of the self-
oscillatory relaxation subsystem of a neuron in a so-

∈ − < ε7t t
: PHYSICS  Vol. 82  No. 11  2018
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Fig. 3. Schematic representation of the sequence of electrical impulses of a neuron in the form of rectangular pulses. Four pulse
sequences have periods  and  is a quasi-period approximately equal to   is the
quasi-period between two maxima. Condensations and rarefactions for pulsed flows with noncommensurable pulse repetition
periods    and  are shown on the right.
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Fig. 4. Types of responses of the nonlinear self-oscillating system of a spiking neuron.
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called axon hillock. The Van der Pol–Fitzhugh equa-
tions have the form

where  is the displacement current and  are
parameters (  ). If  = 0.142, a single
pulse caused by external excitation is the solution to
the equation. The equations describe relaxation oscil-

υ= − − υ + + = ε − + υ
3

; ( ),
3

du u du I U a u b
dt dt

I ε,  ,  a b
= 0.7,a = 0.8b I
BULLETIN OF THE RUSSIAN ACADEM
lations at  = 0.4 [11]. The phase portrait of the Van
der Pol–Fitzhugh equation has the form shown in
Fig. 5.

As follows from an analysis of the isoclines shown
in Fig. 5, a nonlinear neuron block (a self-oscillating
relaxation system) can generate a single electrical
pulse, a periodic sequence of pulses, and clusters of
impulses (bursts) whose frequency usually diminishes
sequentially until they are terminated.

I
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Fig. 5. Phase portraits of point system   Z, where  is a small parameter. The corresponding

medium has different properties, depending on the location of the points of intersection of O-isoclines: (a) An excitable medium:
O is a stable equilibrium state of the system; line OA is an inverting from external influence; the solid line ABCDO is the trajectory
of the further evolution of the system. In this case, the segment AB corresponds to the leading edge of the excitation wave, and
CD corresponds to the trailing edge of the excitation wave. (b) A self-oscillating medium: O is an unstable equilibrium state of the
system; solid line ABCD is the limit cycle described by the system upon self-oscillation. (c) A bistable medium: F and E are the
points of the stable equilibrium states.
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INFORMATION CODING 
IN SPIKING NEURAL NETWORKS

There are different ways of encoding information in
an SN [12, 13]: (1) the phase (time) approach, which
depends on the exact position of the pulses in time,
relative to some common reference position; (2) cod-
ing according to the time before the appearance of the
first pulse, in which information about the signal is
given by time of the first pulse appearing at any output;
(3) the ordinal approach, which depends on the order
of pulses received at the outputs of a network; (4) the
interval (delayed) approach, in which information
about the signal is provided by the distance between
pulses received at the outputs of a network; (5) the res-
onance approach, in which information about the sig-
nal is provided by a dense sequence of pulses leading to
resonance when single pulses decay and do not con-
tribute to the transfer of information. The known types
of coding are illustrated in Fig. 6.

In addition, there are ways of coding information
that are mixed forms of several simple types. It should
be noted that there is currently no full agreement on
ways of coding information in spiking neural net-
works, and this problem requires further investigation.

A way of coding information in an SNN that ade-
quately allows for features and properties of coding
and describes the processes that arise is proposed in
this work. The unit of information is the impulse
sequence. For comparison, one pixel of the image on
a monitor screen is a unit of information for McCull-
och–Pitts binary neurons. The input object is thus
determined by a cluster of pulse sequences generated
by the input object (e.g., the image on a monitor
screen). The input signals are summed by summing
BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES
the pulse sequences, using the properties of quasi-
periodic functions.

The next question is of fundamental importance:
Will recognition remain correct when the intensity of
the input signal is increased, altering the frequency of
the pulse sequences coming from an object? It is nat-
ural to assume that all frequencies of pulse sequences
change synchronously upon a change in intensity. The
change in the frequency of stimuli resulting from their
intensity is described by the Fechner equation [14]

where  are the pulse intensity and the correspond-
ing frequency;  are their initial values. Using the
Kronecker inequality in the QPF theory, we can show
that recognition is topologically invariant with respect
to the intensity of the input signal. The basic property
of the inertial summation of the maximum values   of
pulse sequences is completely preserved. Recognition
remains invariant with respect to the change in the
intensity of the input signal.

How does the dynamics of recognition change
when the intensity of the input signal changes? The
recognition process is not violated, but the pulse repe-
tition rate at the output of the recording neuron or
pool of neurons increases in proportion to the change
in the intensity of the input signal. This has been con-
firmed by experimental studies of the neuron activity
in certain regions of the brain. The model of a spiking
neural network considered in this work requires fur-
ther research.
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Fig. 6. Known types of coding in spiking neural networks.
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CONCLUSIONS
Nonlinear dynamics, physical processes, and

information processing in selective spiking neurons
BULLETIN OF THE RUSSIAN ACADEM
were investigated. We considered summation of the
pulse inputs, based on the theory of quasi-periodic
functions and nonlinear transformation using the self-
oscillating relaxation system of a neuron. A way of
encoding input information was also considered, in
which the unit of information was the pulse sequence
and the intensity of the input signal was encoded by a
synchronous change in the frequency of the pulse
sequences.

REFERENCES
1. Aleksandrov, Yu.I., Anokhin, K.V., Sokolov, E.N.,

et al., Neiron. Obrabotka signalov. Plastichnost’. Mod-
elirovanie. Fundamental’noe rukovodstvo (Neuron. Sig-
nal Processing. Plasticity. Modeling. Comprehensive
Guide), Tyumen: Tyumen. Gos. Univ., 2008.

2. Borisyuk, G.N., Borisyuk, R.M., Kazanovich, Ya.B.,
and Ivanitskii, G.R., Phys.-Usp., 2002, vol. 45, p. 1073.

3. Hodgkin, A.L. and Huxley, A.F., J. Physiol., 1952,
vol. 117, no. 4, p. 500.

4. Mazurov, M.E., Bull. Russ. Acad. Sci.: Phys., 2018,
vol. 82, no. 1, p. 73.

5. Mazurov, M.E., Trudy VI mezhdunarodnoi konferentsii
“Matematicheskaya biologiya i bioinformatika” (Proc.
VI Int. Conf. “Mathematical Biology and Bioinformat-
ics”), Pushchino, 2016, p. 82.

6. Mazurov, M.E., RF Patent 2598298 (2015).
7. Mazurov, M.E., RF Patent 2597495 (2014).
8. Mazurov, M.E., RF Patent 2597497 (2015).
9. Mazurov, M.E., RF Patent 2597496 (2015).

10. Levitan, B.M., Pochti-periodicheskie funktsii (Almost
Periodic Functions), Moscow: Gostekhizdat, 1953.

11. Fitzhugh, R., Biophys. J., 1961, vol. 1, no. 6, p. 445.
12. Melamed, O., Gerstner, W., Maass, W., et al., Trends

Neurosci., 2004, vol. 27, no. 1, p. 11.
13. Izhikevich, E.M., Dynamical Systems in Neuroscience:

The Geometry of Excitability and Bursting, London:
MIT Press, 2007.

14. Grechenko, T.N., Psikhofiziologiya (Psychophysiol-
ogy), Moscow: Gardariki, 2009.

Translated by I. Obrezanova
Y OF SCIENCES: PHYSICS  Vol. 82  No. 11  2018


	INTRODUCTION
	SELECTIVE NEURONS AND NEURAL NETWORKS
	ROLE OF SYNAPSES IN THE SUMMATION OF PULSED STREAMS
	SUMMING OF INPUT PULSE SEQUENCES
	NONLINEAR BLOCK OF A SPIKING NEURON AS A RELAXATION SELF-OSCILLATING SYSTEM
	INFORMATION CODING IN SPIKING NEURAL NETWORKS
	CONCLUSIONS
	REFERENCES

