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Abstract—We present a novel method, based on the single particle Schroedinger equation, to determine the
central potential (mean-field) directly from the single particle matter density and its first and second deriva-
tives. As an example, we consider the experimental data for the charge density difference between the isotones
206Pb –205Tl, deduced by phase shift analysis of elastic electron scattering cross-section measurements and
corresponds to the shell model 3s1/2 proton orbit, and determine the corresponding single particle potential.
We also present results of least-square fits to parametrized single particle potentials. The 3s1/2 wave functions
of the determined potentials reproduce fairly well the experimental data within the quoted errors. More accu-
rate experimental data, with uncertainty smaller by a factor of two or more, may answer the question how well
can the data be reproduced by a calculated 3s1/2 wave function.
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INTRODUCTION
The nuclear shell model is based on the assumption

that nucleons in the atomic nucleus move inde-
pendently in single particle orbits in a common poten-
tial well (mean-field). As well known, it has been very
successful in explaining many features of nuclei [1]. In
determining the nuclear mean-field potential, it is
common to: (i) parametrize the central potential,
using for example, the Woods–Saxon form. The
parameters are determined by a fit of calculated prop-
erties, such as single particle energies and reaction
cross-sections, to the corresponding experimental
data [2]; and (ii) by carrying out Hartree–Fock calcu-
lations using a parametrized effective two-body inter-
action. The parameters are determined by a fit to
experimental data, such as binding energies and
nuclear radii [3]. In this work we present a novel
method, based on the single particle Schroedinger
equation for a wave function  with eigenenergy E,
to determine the central potential  directly from
the measured single particle matter density,  =

 and its second derivatives, assuming that they
are known for all .

The relation between shell model wave functions
and the real nuclear ones is rather complicated.
Important information about it may be gleaned from
the measurement of the charge distribution of the pro-
ton 3s1/2 orbit. This is given by the measured charge
density difference, , between charge density
distributions of the isotones 206Pb – 205Tl. This differ-
ence was determined many years ago, by analysis of
elastic electron scattering measurements [4, 5]. The
experimental data of the charge density shows a clear
maximum at the center of 206Pb with two additional
maxima. This seems to be the shape obtained from a
3s1/2 single proton wave-function, in agreement with
the simple shell model. It was pointed out [4] that
commonly used central potentials, such as the
Woods–Saxon potential, lead to a 3s1/2 charge density
in disagreement with experimental data. In particular,
the central density obtained from the Woods–Saxon
potential is too large by 40%.

This difference between data and the Woods–
Saxon results was considered in Ref. [6]. In that paper,
it seems that it is consistent with effects of two-body
short range correlations on the shell model wave func-
tions. Using our new method, we look in this work for1 The article is published in the original.
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a single particle nuclear potential whose proton 3s1/2
orbit yields a charge distribution which reproduces the
experimental one. The resulting single particle poten-
tial, if found, will provide a stringent limit on the
effects of short range correlations on the expected val-
ues of long-range operators. The potential can also be
used as an additional experimental constraint in deter-
mining a modern energy density functional (EDF),
needed for more reliable prediction of properties of
nuclei and nuclear matter [3, 7]. A summary of the
results of the present work were publishes in Refs.
[8, 9]. Here, a detailed derivation of the novel method
is presented, as well as a detailed description of the
search for a potential well which will yield a good fit to
the 206Pb–205Tl experimental data.

In section II we consider the single particle
Schroedinger equation and describe the method for
determining the single particle potential  from a
given single particle wave function  or matter
density,  =  , assuming it is known for all 
[1]. In particular, we consider the case of spherical
symmetry. We also describe the method of deducing
the point proton density from the charge distribution
determined in electron scattering measurement. In
section III we present results for the case of the exper-
imental data [4, 5] for the charge density difference
between the close (ΔZ = 1) isotones 206Pb–205Tl, asso-
ciated with the 3s1/2 proton single particle orbit, and
determine the corresponding single particle potential.
In Section IV we present our conclusions.

1. FORMALISM
1.1. Determining Single Particle Potential 

from Single Particle Matter Density
Consider the single particle Schroedinger equation,

(1)

where  is a real local and non-singular potential
and , with  being the gradient operator.
For a given single particle wave function , known
for all , and given eigenvalue E, we obtain from
Eq. (1) that the corresponding single particle potential
V is uniquely determined [1] from

(2)

We note that for a nonsingular V,  when
 . It is important to point out that in the anal-

ysis of experiments, such as electron scattering, one
determines the matter density  for real

Ψ. Operating with Δ on , where b is positive
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and real, and using the relation  with

the definition  of Eq. (2), we obtain the

general relation

(3)

Note that Eq. (2) is a special case of Eq. (3) for
b = 1. For b > 2,  and 

when For b = 2, we have from Eqs. (2)
and (3) that the potential  is given in term of the
corresponding single particle matter density  (for
real ) and its first and second derivatives.

In the spherical case the wave function of a nucleon
is written as

(4)

where  is the (one-dimensional) radial wave
function for the orbit with principle number n, orbital
angular momentum l and total angular momentum j
and  is the known spin harmonic wave function,
with the normalization

(5)

The corresponding single particle potential for a
nucleon has the form

(6)

where  and , are

the nuclear central, spin-orbit and Coulomb poten-
tials, respectively, and  = 1 for a neutron and –1 for
a proton. Using Eqs. (2), (4) and (6) we have that
nuclear central potential is given by,

(7)

where  and  for  and
, respectively. The single particle radial

density  is related to the square of the single par-

ticle radial wave function  by
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Using Eq. (1) one can deduce the radial wave-
function  and determine the central potential
using Eq. (7). But this leads to numerical complica-
tion, particularly in the vicinity of the nodes of the
wave function. From Eq. (1) for the radial wave-func-
tion  and Eq. (3) for b = 2 we have that the cor-
responding single particle potential V can be obtained
from (6) by using the simple relation

(9)

From Eqs. (8) and (9) we find the relation

(10)

Equation (10) can also be derived from Eq. (3) with
b = 2 using the (real) three-dimensional wave function
and the operators Δ and  in spherical coordinates.

As an example we note that for the single particle
radial wave function of the form , an
eigenstate of a constant potential, one finds from (7)

the corresponding constant potential .

Similarly, for the Harmonic Oscillator  single par-
ticle wave function

(11)

with the size parameter  we have from (7) the

expected potential

(12)

We note that for the central nuclear potential it is
common to use the Woods Saxon (WS) form,

(13)

where, ,  and  are the depth, half radius and dif-
fuseness parameters, respectively. Furthermore, for
the Coulomb potential we adopt the form obtained
from a uniform charge distribution of radius ,

(14)

In Eqs. (14),  is the equivalent radius deter-
mined by the charge root-mean-square radius, 
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The form of the spin-orbit potential is commonly
taken as,

(16)

where c is adjusted to the experimental spin-orbit
splittings (~ 0.2).

1.2. Determining the Point Proton Density 
from the Charge Density

In elastic electron-nucleus scattering measurement
one determines the charge density distribution, ,
by carrying out a phase shift analysis of the cross sec-
tion [10], whereas in theoretical model one calculates
the point proton density distribution, . They are
related by,

(17)

where  is the charge density distribution of a
free proton. From elastic electron scattering on a free
proton one finds that,

(18)

where  with  fm being the corre-

sponding charge root mean square (rms) radius. The
charge mean square radius is given by

(19)

From Eqs. (17) and (19) one has the relation

(20)

Considering below the spherical case, we have
using Eqs. (17) and (18), that

(21)

It is common [8] to define the form factor F(q) as
the Fourier transform of the density  as
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The corresponding inverse transform is given by
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For the proton charge distribution of Eq. (18) we
have the dipole form

(24)

For the charge density , given by the convolu-
tion relation of Eq. (17) we have the simple relation for
the form factors

(25)

Eq. (25) can be used to determine the form factor
, associated with the point proton density distri-

bution , Eq. (17). Then  can be obtained
from , using (23) and compared with theoretical
predictions.

2. RESULTS
In this work we consider the charge density dif-

ference,

(26)
between the isotones 206Pb – 205Tl, associated with the
proton 3s1/2 single particle orbit, and determine the
corresponding single particle potential. The experi-
mental data for the charge densities, , of the iso-
tones 206Pb and 205Tl, obtained from accurate elastic
electron scattering experiments, are taken from Refs.
[4, 5], where they are given in term of sums of Gauss-
ian functions of r.

In Fig. 1a we present the experimental data for the
charge density difference, , between the iso-
tones 206Pb–205Tl, shown by the solid line. It is nor-
malized to a total charge of one proton (Z = 1). The
experimental uncertainty is indicated by the dotted
lines. Note that the two nodes associated with the pro-
ton 3s1/2 orbit are clearly seen in the figure. The exper-
imental values of the charge rms radii of 206Pb and
205Tl are 5.4897 and 5.4792 fm, respectively, leading to
a value of 6.2822 fm for the charge rms radius of the
proton 3s1/2 orbit. To determine the corresponding
single particle potential, using Eqs. (7) and (9) or (10),
the point proton distribution, , is needed. This
is obtained by using Eqs. (22), (24) and (25) to deter-
mine the point proton form factor, , and then
employing Eq. (23) to obtain . The results are
shown as a solid line in Fig. 1b. The experimental
uncertainty is shown by the dotted lines. Using the
value of  in Eq. (20), we find that the rms
radii of the proton density distributions of 206Pb and
205Tl are 5.4235 and 5.4129 fm, respectively, leading to
a value of 6.2244 fm for the rms radius of the point
proton 3s1/2 orbit. Note that  (solid line) is
slightly negative at the first node (r ~ 2.6 fm) and
above zero at the second node (r ~ 4.9 fm). Moreover,
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in the vicinity of these minima, the experimental
uncertainty in  is larger than its value.

We also present in Figs. 1a, 1b (dashed line) the
charge density  and the point particle density

 of the proton 3s1/2 orbit, respectively, cor-
rected for the rearrangement effect (from 205Tl to
206Pb). We adopted the scaling model to assess the
rearrangement effect [11]. The charge distribution of
205Tl is scaled so that the charge rms radius of the
scaled density is equal to that of the 81 core protons in
206Pb. We obtained,

(27)
where the scaling parameter  = 5.4792/5.4848 =
0.9990 is the ratio between the charge rms radius of
205Tl to that of the core 81 protons in 206Pb. The value
of 5.4848 fm is obtained by adopting the Harmonic
Oscillator approximation for the single particle proton

( )Δρ p r

( )ΔρRc r
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( ) − α ρΔ α= 206 2053) (ρ ρ ( ; Pb Tl ,; )cRc cr rr
α

Fig. 1. (a) The experimental difference, Δρc(r) between
206Pb and 205Tl charge distributions (solid line). The
dashed line is for ΔρRc(r), the data after rearrangement
correction. The dotted lines indicate the experimental
uncertainty. (b) The experimental difference, Δρp(r)
between 206Pb and 205Tl charge distributions (solid line).
The dashed line is for ΔρRp(r), the data after rearrange-
ment correction. The dotted lines indicate the experimen-
tal uncertainty.

3

7

–1

11

0 2 4 86 10
r, fm

(b)Δρp × 103, fm–3

3

7

–1

11
(a)Δρc × 103, fm–3



1234

BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES: PHYSICS  Vol. 81  No. 10  2017

SHLOMO, ANDERS

orbits in 206Pb and subtracting the contribution of the
proton 3s1/2 orbit, using the value of  fm. We
add that the same value of  is obtained by assuming
that the charge rms radius of the core 81 protons in
206Pb is larger than that of 205Tl by 0.005 fm, a value
similar to the change in the charge rms radii for iso-
tone in this region [11]. We note that  of
Eq. (27) is normalized to 1. It is seen from Fig. 1b that

 (dashed line) is above zero at the first node
(r ~ 2.6 fm) and at the second node (r ~ 4.9 fm). We
point out that the magnitude of the difference between

 and  is similar to that of the experi-
mental uncertainty.

Using the relation (8) we determined the corre-
sponding square of the 3s1/2 convoluted (charge) radial

wave function  as obtained from
Fig. 1a and shown by the solid line in Fig. 2a. Simi-
larly, , the dashed line in

= 0.85pfsr
α

( )ΔρRp r

( )ΔρRp r

( )Δρ p r ( )ΔρRp r

( ) ( )= π2 24 Δρc cR r r r
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Fig. 2a is obtained from the dashes line in Fig. 1a. The
dotted lines indicate the experimental uncertainty. In
Fig. 2b we present the square of the point particle
radial wave function , (solid line)
obtained from the solid line of Fig. 1b. The dotted
lines indicate the experimental uncertainty. Similarly,

, the dashed line in Fig. 2b is
obtained from the dashed line in Fig. 1b.

We have therefore used the experimental  of
Fig. 2b, shown by the solid line, to directly deduce the
corresponding potentials by employing Eqs. (6), (7)
and (9), obtaining the results shown in Fig. 3a by the
solid line. Similarly, in Fig. 3b we show the potential
obtained from  of Fig. 2b. The Coulomb poten-
tial of Eq. (14), with  fm, was adopted in the
calculations. For the 3s1/2 orbit, there is no contribu-
tion from the centrifugal and spin-orbit potentials. We
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Fig. 2. Similar to Fig. 1. (a) ρc(r). The

dashed line is for  related to ΔρRc(r).

(b) ρp(r) where Δρp(r) is derived from the

experimental Δρc(r). The dashed line is for  related
to ΔρRp(r) similarly obtained from ΔρRc(r).

0.1

0.3

–0.1

0.5

0 2 4 86 10
r, fm

(b)

0.1

0.3

–0.1

0.5 (a)

2 –1, fmcR

2 –1, fmpR

( ) = π2 2
  4 ΔcR r r

( )2  RcR r

( ) = π2 2
  4 ΔPR r r

( )2  RpR r

Fig. 3. (a) The solid line is the potential derived from the

ρp(r) using Eqs. (7) and (9). The dashed
line is the potential derived from an  fit

near each of the minima of  since the potential blows
up. (b) Similar to (a) except rearrangement correction has
been taken into consideration.
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note that for nonsingular potential V,  when

. As seen from Fig. 2b, this condition is not

fulfilled at the nodes of the experimental .
Moreover, in the vicinity of these nodes, the uncer-
tainty in  is larger than its value. This leads to a
very large uncertainty for V in regions of the nodes. We
have thus constructed from the experimental data
radial wave functions having a proper behavior at the
zeroes (around 2.6 and 4.9 fm), by fitting the experi-
mental point radial wave function to the function

 in the vicinity of the nodes. The
corresponding (constant) potentials are shown by the
dashed lines in Fig. 3.

In view of the resulting potentials shown in Fig. 3,
we have constructed from the experimental data a
function  having a proper behavior at the zeroes
(around 2.6 and 4.9 fm). This was done by fitting the
experimental point radial wave function to a sum of

=
2

2
  0d R

dr
( ) =� 0R r

( )2
pR r

( )Δρ p r

( )= +sin φpR A kr

( )2
pR r

two separate sine functions 
spliced together at r ~ 5.3 fm. This function is shown
by the dashed line in in Fig. 4a. Also shown in Fig. 4a
are the experimental data (solid line) and the uncer-
tainty (dotted lines). We then determined the nuclear
potential from the fitted  (dashed line of Fig. 4a)
by employing Eqs. (7) and (9). The results are shown
by the dashed line of Fig. 4b. Note the step function
behavior of the resulting potential.

We have therefore considered several nuclear cen-
tral potentials with parameters obtained by fits of the
calculated  to the corresponding experimental
data, taking into account the Coulomb potential,
Eq. (14). In Fig. 5 we show the potential VF(r), solid
line, which is a smoothed potential of a jagged, multi-
ply connected linear potential by taking the values of
the jagged, linear potential at r = 3, 6 and 9 fm as free
parameters, the value of the potential at r = 0 fm is
constrained to reproduce the experimental value of
7.25 MeV for the separation energy of the proton 3s1/2
orbit and the value of the potential is taken to be
0.0 MeV at r = 12 fm. The values of VF(r) are deter-
mined by polynomial fit to all the values of the jagged,
linear potential and is smoothed near r = 0 and 12 fm
so that the first derivative is zero. From a fit to the
experimental data of , solid line in Fig. 2b, we
obtained that the values of VF(r) at r = 0, 3, 6, 9 and
12 fm are –58.19, –83.15, –34.50, –23.54 and
0.0 MeV, respectively, with a corresponding χ2/N =
1.15. Similarly, the potential VRF(r) (dashed line in

Fig. 5) is obtained by a fit to  (dashed line of
Fig. 2b) resulting with the values of –51.32, –88.29,
‒33.64, ‒23.96 and 0.0 MeV, for VRF(r) at r = 0, 3, 6,
9 and 12 fm respectively, with a corresponding χ2/N =
1.81. The potential VWSF(r), dashed double dotted line
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Fig. 4. (a) The experimental difference,

ρp(r) between 206Pb and 205Tl charge dis-
tributions (solid line). The dashed line is for an

 fit with two separate Sine functions
spliced together at 5.3 fm. The dotted lines indicate the
experimental uncertainty. (b) The dashed line is the potential
derived from the spliced Sine functions, using Eqs. (7) and (9).
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Fig. 5. Potentials fitted to data in Fig. 1b. The VF(r) poten-
tial (solid line), the VRF(r) version including rearrangement
(dashed line) and the fitted VFWS(r) potential (double dotted-
dashed line) are shown. Also shown is the conventional
Woods–Saxon VWS(r) potential (dashed-dotted line).
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in Fig. 5, is obtained by fitting experimental data of
 to that calculated using Woods–Saxon poten-

tial, Eq. (13), obtaining the values of –167.95 MeV,
‒0.03 and 4.68 fm for V0, R1 and a0, respectively, with
the corresponding value of χ2/N = 3.28. For compari-
son, we also show by the dashed-dotted line the
Woods–Saxon Potential VWS(r) using the conven-
tional values of –62.712 MeV, 7.087 and 0.65 fm for V0,
R1 and a0, respectively, with the corresponding value
of χ2/N = 8.85.

In Figs. 6a, 6b we compare the experimental results
of the square of the convoluted (charge) radial wave
function  and the charge density ) of the
proton 3s1/2 orbit, respectively, with the corresponding
results obtained from the potentials shown in Fig. 5.
The experimental data is given by the region defined
by the dotted lines and the results obtained using,
VF(r), VWSF(r) and VWS(r) are shown by the solid,
dashed-double dotted and dashed-dotted curves,
respectively. Note that the results of the fitted poten-
tials VF(r) and VRF(r) are in very good agreement with

( )2
pR r

( )2
cR r Δρ (c r

the experimental data. The results of the fitted poten-
tial VWSF(r) are in reasonable agreement with data. It is
important to point out that the amplitudes of the
oscillations of  obtained from the conventional
WS potential VWS(r) are much larger than those of the
experimental data for r smaller than 5.0 fm and much
smaller than data for r larger than 5.0 fm. Also, as
noted in Refs. [4, 5], the calculated value of the charge
density  at r = 0 fm obtained using the VWS(r)
potential is larger than the experimental value [4, 5] by
a factor of two.

In Fig. 7a–7c we compare , the square of the
radial functions, of the 1s1/2, 2s1/2, and 3s1/2 proton

( )2
cR r

( )Δρc r

( )2
cR r

Fig. 6. Experimental values of  (a)
and  (b) plotted between dotted lines of error lim-
its. They are compared to calculated charge distributions
due to the 3s1/2 wave functions of the fitted VF(r) potential
(solid lines), the fitted Woods–Saxon VFWS(r) potential
(double dotted-dashed lines) and the conventional VWS(r)
potential (dashed-dotted lines).
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Fig. 7. Calculated squared wave funcitons,

, of a proton in the 1s1/2 (a), 2s1/2
(b) and 3s1/2 (c) orbits in the VF(r) potential (solid lines)
and the conventional VWS(r) potential (dashed lines).
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orbits, respectively, obtained from the fitted potential
VF(r) (solid lines) with those obtained from the con-
ventional WS potential VWS(r) (dashed-double dotted
lines). The separation energies of the 1s1/2, 2s1/2, and
3s1/2 proton orbits are –47.09, –22.64 and –7.24 MeV
and –36.31, –24.46 and –8.00 MeV for the VF(r) and
VWS(r) potentials, respectively. Note the relatively
large separation energy of the 1s1/2 proton orbit

obtained for the VF(r), which is closer to the experi-
mental data [12].

In Fig. 8a–8c, we show the corresponding charge
density of the 1s1/2, 2s1/2, and 3s1/2 proton orbits for the
VF(r) (solid lines) and VWS(r) (dashed-double dot
lines) potentials, respectively. We point out that at r =
0 fm only the proton s orbits contribute to the charge
density, , in 206Pb. The calculated value of

 fm–3 for the fitted potential VF(r) is sig-
nificantly smaller than the value of  fm–3

for conventional Woods–Saxon VWS(r), in good agree-
ment with experimental value of  fm–3

[4, 5].

3. CONCLUSIONS

Starting from the single particle Schroedinger
equation for the function , with eigen-energy E,
we have derived a novel method for determining the
corresponding single particle potential V from

, where b is a real number, assuming that

  and  are known for all posi-
tions , see Eqs. (2) and (3). It is clear from the
Schroedinger equation that for a nonsingular V,

 when . This condition is
extended to the requirements that for b > 2,

 and  when 
For b = 2, we have from Eqs. (2) and (3) that the
potential  is given in term of the corresponding
single particle matter density  (for real ) and
its first and second derivatives.

We have presented results for the nuclear single
particle potential V associated with the proton 3s1/2
orbit in 206Pb deduced from the electron scattering
[4, 5] data for the charge density difference between
the isotones 206Pb – 205Tl, obtained by employing our
new method for the special case of spherical symme-
try, Eqs. (7) and (10). The results for the proton 3s1/2
orbit in 206Pb, shown in Fig. 3a, exhibit large uncer-
tainty for V around the zero values of the 3s1/2 proton
density , where the experimental uncertainty
in  is lager than its value. It is difficult to see
whether the conditions that the first derivative of

 and the corresponding expression in the
square brackets in the right hand side of Eq. (10) van-
ish when , which are necessary for deter-
mining a nonsingular V, are satisfied by the experi-
mental data for .

We have also carried out a least-square fit of the
calculated density  of the 3s1/2 point proton
density to the corresponding experimental data, using

( )ρc r
( ) =ρ 0 0.060c

( ) =ρ 0 0.073c

( ) =ρ 0 0.063c

( )�Ψ r

( )[ ]�Ψ br
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Fig. 8. Calculated charge densities of a proton in the
1s1/2 (a), 2s1/2 (b) and 3s1/2 (c) orbits in the VF(r) potential
(solid lines) and the conventional VWS(r) potential (dashed
lines).
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the three parameters Woods–Saxon potential and a
potential defined by its values at r = 0, 3, 6, 9, and
12 fm and compared with the results obtained from the
conventional Woods–Saxon potential. We note that
the fitted potentials exhibit large diffuseness (Fig. 5).
As seen from Fig. 6, we obtained good agreements
with the experimental data for the fitted potentials,
whereas the results obtained from the conventional
Woods–Saxon potential are in disagreement with
data. Clearly more accurate experimental data for

 with uncertainty smaller by a factor of two or
more may help in answering the question how well can
the data be reproduced by a calculated 3s1/2 single par-
ticle wave function and thereby determining the form
of V.
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