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INTRODUCTION
In this work, we calculate the contribution from

three body (3N) interactions to the single-particle
characteristics of nucleons in nuclear matter. We
determine the contributions to vector self-energy ,
and to effective mass m*. We also obtain the contribu-
tion from 3N forces to nucleon potential energy U and
find the dependence of these characteristics on
nuclear density . Calculations are performed for sym-
metrical matter containing equal number of protons
and neutrons.

In traditional approaches, the role of 3N forces is
determined by analyzing nucleon interactions. In the
QCD sum rules approach, nucleons of matter interact
with a system having baryon (proton) quantum num-
bers with four-momentum q in the rest frame of the
matter. The function describing the distribution of this
system is often referred to as a polarization operator
and is denoted as . At positive values of , func-
tion  has singularities associated with real physical
states. The lowest pole corresponds to an in-medium
proton that we refer to as the probe proton.

Due to the asymptotic freedom of QCD at large
and negative , function  can be obtained by
means of perturbation theory. A dispersion relation
connects the regions of small and large values of .
The parameters of the probe proton are thus associ-
ated with those of the expansion of function  at
large and negative values of .

The QCD sum rules were proposed in [1] to study
mesons in a vacuum. The approach was later expanded
to calculate the vacuum parameters of baryon [2]. The
dispersion relations were analyzed for vacuum polar-
ization operator . The left-hand sides of the
dispersion relations were presented as power series in

1 This article was translated by the authors.
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1/q2. The leading term was a free three-quark loop.
The subsequent terms were dictated by quark
exchanges between the polarization operator and the
vacuum condensates: , and so on
(see Fig. 1). This is known as the Operator Product
Expansion (OPE). Note that in the Feynman dia-
grams shown in Figs. 1b, 1c, the polarization operator
exchanges noninteracting quarks with the vacuum.
The inclusion of their lowest order interactions corre-
sponds to radiative corrections to these diagrams on
the order of  [3].

The vacuum polarization operator can be pre-

sented as  = , and in the dis-
persion relations

(1)

the left-hand sides are the lowest order OPE terms.
(Below, we see there is no need to worry about sub-

tractions.) The imaginary parts of  are usually
approximated using the pole + continuum model, in
which the contribution from a pole is treated exactly,
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Fig. 1. Main contributions to the polarization operator in a
vacuum: (a) from the free quark loop; (b) from the con-
densate ; (c) from the four-quark condensate. The
solid lines represent quarks. The wavy lines are for a system
with nucleon quantum numbers.
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while the higher states are described by continuum.
The magnitude of a jump is determined by OPE terms

(2)

Here, . The position of proton pole m,
residue , and continuum threshold  are
unknowns that must be determined from the sum
rules. This is how the proton parameters are associated
with the vacuum condensates. This approach has
proven effective in calculating static hadron character-
istics and some features of their dynamics [3].

The QCD sum rules were expanded in [4] to calcu-
late nucleon characteristics in a medium with a finite
baryon number density. The structure of the polariza-
tion operator in nuclear matter is  =  +

. Here we introduced four-vec-
tor  with vacuum nucleon mass m (ignoring
small neutron–proton mass splitting). The conden-
sates acquire in-medium values 

, and so on, where  is the nuclear
matter’s ground state. There are also new condensates
that have zero vacuum values. Vector condensate

 is the one most important. The
differences between the in-medium and vacuum val-
ues determine the changes in single-particle nucleon
characteristics.

Functions  depend on two vari-
ables, which can be  and . Fixing

, we separate the singularities of the polariza-
tion operator associated with the in-medium proton
from those associated with the excitation of the
medium. Employing the pole + continuum model to
the spectrum of the polarization operator, we obtain
the dispersion relations

(3)

where the left-hand side is described by several OPE
terms, and the imaginary part is

(4)
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vector self-energy and the effective mass must be
determined from the sum rules, along with parameters

 and . The position of the proton pole can be
expressed in terms of vector and scalar self-energies 
and . In a linear approximation,

. The proton parameters are thus
expressed through the exchange of noninteracting or
weakly interacting quarks between the polarization
operator and the matter. The latter exchange can be
expressed in terms of the in-medium QCD condensate.

The vector and the scalar proton self-energies can
be considered a result of meson exchange between a
probe proton and the nuclear matter. On the other
hand, mesons are strongly correlated quark systems,
so the exchange of strongly correlated quarks is
expressed in the QCD sum rules through that of
weakly correlated quarks.

The OPE of the left-hand sides contains terms

 with QCD condensates as coefficients. The
larger values of n correspond to condensates of higher
dimensions. The assumed convergence of OPE thus
corresponds to the hypothesis that the condensates of
lower dimensions are the ones most important. The
left-hand sides of the sum rules can be written as

(5)

with lower index n denoting the dimension of the con-
densate (n = 0 for a free quark loop).

We normally use the Borel transform (an inverse
Laplace transform) to improve the convergence of the
OPE. This transform converts the functions depend-

ing on  to ones of Borel mass . It is important

that this transform removes any polynomial in 
(which explains why we do not worry about subtrac-
tions in Eq. (1)). The Borel transform yields −1, when
acts on 1/q2. The transformed Borel sum rules are then

(6)
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order of unity. In these equations, we put the contin-
uum contributions on the left-hand sides:

(7)

with the tilde denoting the Borel transform.

The lowest dimension condensates with n = 3 that
contribute to the polarization operator are the vector
and scalar condensates:

(8)

They correspond to the exchange of vector and scalar
mesons between a probe proton and the matter. The
vector condensate is written in the rest frame of
the matter. The most important condensates of
higher dimensions are four-quark condensates

, which have dimension n = 6.

TWO BODY INTERACTIONS 
IN QCD SUM RULES

To calculate the contribution from two-body forces
to the characteristics of a probe proton, we must
include the separate contributions from in-medium
nucleons to the polarization operator. In other words,
we must calculate the polarization operator in the sys-
tem of noninteracting nucleons. This means we must
include only the linear density dependent terms in the
condensates. While the vector condensate is purely
linear in density ( , with N = 3 being the
number of valence quarks in the nucleon), the density
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dependence of the scalar condensate is somewhat
more complicated:

(9)

with nonlinear term  resulting from the interac-
tion between in-medium nucleons. It was noted above
that four-quark condensates are the most important
condensates of higher dimensions. In calculating the
2N forces, we include only those configurations in
which all four-quark operators act on the same in-
medium nucleon. The polarization operator corre-
sponding to the inclusion of 2N interactions is shown
in Fig. 2.

Matrix element  can be expressed through the
pion–nucleon -term: , where

 denotes the light quark masses. The experimental
and theoretical values of sigma-term  lie in the
interval between 35  [5] and 70 MeV [6]. The conven-
tional value is MeV. This is how the charac-
teristics of a probe nucleon are expressed in terms of
observables.

Calculations for four-quark condensates require
model assumptions on the quark structure of the
nucleon. We employed the relativistic model formu-
lated in [7] with some modifications proposed in [4].
The results in [4] agree with those obtained by means
of traditional nuclear physics.

THREE-BODY INTERACTIONS 
IN THE SUM RULES

The above analysis shows we must include the sca-
lar condensate in which we consider the 2N forces
between in-medium nucleons. In other words, we
must calculate function  on the right-hand side of
Eq. (9), limiting ourselves to 2N forces. We must
include also the configurations of the four-quark con-
densates in which two pairs of quark operators act on
two different in-medium nucleons (see Fig. 3).

It was shown in [4] that the main contribution to
function  comes from the pion field created by

κ = κ + κ +
κ = ∑
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Fig. 2. Main contributions to the polarization operator in
nuclear matter that correspond to the inclusion of
2N interactions: (a) from the vector condensate; (b) from
the scalar condensate; (c) from the four-quark condensate.
Bold lines denote the nucleons of the matter.
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Fig. 3. Main contributions to the polarization operator in
nuclear matter that correspond to the inclusion of
3N interactions: (a, b) from the nonlinear part of the scalar
condensate (the shaded block is for the pion field);
(c) from the four-quark condensates.
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nucleons. The contributions from one- and two-pion
exchanges to function  were determined in [8]
using the Chiral perturbation theory. Separating the
contribution from the 2N in-medium interactions in
the equations found in [8], we find the required con-
tribution to the scalar condensate.

The scalar–scalar and scalar–vector condensates
appear to be the most important ones among the four-
quark condensates, and can be calculated inde-
pendently of the model. We used a model in which
2N interactions are calculated to obtain the other four-
quark condensates.

Employing Eq. (7) with these condensates, we find
that in symmetric nuclear matter at saturation value of
density , 3N interactions lower the
value of the effective mass by 26 MeV. They reduce the
vector self-energy by 37 MeV. Our approach allows us
to find the density dependence of the 3N forces. Intro-
ducing , we can approximate the contribu-
tions from these forces to the nucleon parameters as

(10)
Note that the inclusion of 3N interactions between

in-medium nucleons strongly raises the value of 
[8], resulting in a large contribution from four body

(4N) interactions to the nucleon effective mass
(around + 100 MeV). The 4N forces do not noticeably
change the nucleon vector self-energy. Detailed anal-
ysis of the role of 4N interactions will be the subject of
a future work.
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