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Abstract⎯A continual magnetic dynamics model of an ensemble of antiferromagnetic nanoparticles with
uncompensated spin is developed that allows descriptions of the energy spectrum, magnetic dynamics, and
Mössbauer spectra of antiferro- and ferromagnetic nanoparticles. Qualitative effects observed experimentally
for almost half a century can be explained using this approach, and they can be described quantitatively.
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Antiferromagnetic (AFM) nanoparticles are widely
used in different fields of engineering, due to the spe-
cific structural, magnetic, and thermodynamic prop-
erties of such materials. At the same time, the diagnos-
tics of real materials using different experimental
methods continues to be based on Néel’s phenomenal
approach, which describes the superposition of anti-
ferromagnetism and supermagnetism of an uncom-
pensated magnetic moment in two magnetic sublat-
tices [1]. Models allowing the analysis of experimental
data have so far been based exclusively on an uncom-
pensated magnetic moment and a simplified interpre-
tation of antiferromagnetism in the context of Néel’s
linear sucseptibility [2], which inevitably interferes
when assessing the derived physical parameters.

Only recently was a way out of this approximation
found, along with quantum-mechanical [3] and con-
tinual [4] models for describing the thermodynamics
and Mössbauer spectra of an ensemble of perfect AFM
particles. This immediately allowed qualitative
description of the difference between the thermody-
namic properties of ferromagnetic (FM) and AFM
nanoparticles, particularly the quantum effects
observed in the spectra of 57Fe nuclei in the 1960s [5],
and specific shapes of the spectra of AFM particles in
the macroscopic range [6].

It was also shown that considering uncompensated
spin results in no qualitative changes in these effects,
but slight numerical corrections in both the quantum
model in [7] and the simplified continual model in [8],
which is based only on normal modes of the homoge-
neous precession of magnetization vectors of sublat-
tices (Fig. 1). Even though the homogeneous preces-
sion modes are accurate, they are particular solutions
of the equation of motion, and their general solution

must contain nutations of magnetization against
homogeneous precession, in analogy with classic
problems on particles in a central field, a spherical
pendulum, and a heavy gyroscope [9]. Nutations were
considered in the continual model in [4]. However, a
quantitative description of experimental data requires
generalization of this model for an uncompensated for
magnetic moment. The aim of this work was to solve
this problem.

In analogy with [4, 8], let us consider the simplest
expression for the energy density of AFM particles with
exchange interaction constant J > 0 and axial magnetic
anisotropy constant K in an approximation of two sub-
lattices with magnetization vectors  and 

(1)

where θ1 and θ2 are the angles between vectors  and
 and the easy axis. One difference from perfect

AFM particles [4] is that the absolute values of M1 and
M2 can vary in (1). According to the classic theories of
AFM [10] and FM [11] resonances, our problem can
be considered phenomenologically by assuming that
the magnetic moment of each i-th sublattice precesses
in the internal effective field:

which satisfies equation of movement

(2)

where γi is the magnetomechanical relation for the i-th
sublattice. In our case, the effective magnetic fields
acting on each sublattice are determined by the expres-
sions
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where effective exchange field values  and
anisotropy field  are introduced for each
sublattice [10, 11], along with normalized sublattice
magnetization values  and their projec-
tions miz = Miz/Mi on the easy axis with unit vector 

The general solutions to equations of motion (2)
are described by a set of equations differential with
respect to time t for the magnetization components.
For longitudinal components of perfect AFM particles
in particular, we have [4]

(3)

where  and  is the quadric
polynomial relative to m1z and m2z. According to
Eq. (3), along with the energy the integral of motion is
the total magnetic moment projected onto the anisot-
ropy axis  and Eqs. (3) can be rewritten
for longitudinal antiferromagnetism vector compo-
nent 
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where  is the classic
AFM resonance frequency in a zero external magnetic
field [10]. For fixed E and m values, Eq. (4) determines
the time dependence and the range of changes in the
longitudinal magnetization components of the sublat-
tices. The latter in turn determine the type and charac-
teristics of the trajectories of the motion of vectors 
and  in the form of nutations (Fig. 1), i.e., their
self-consistent precession around z axis with simulta-
neous polar angle vibrations in the range given by
parameters  and  [4, 9]. At the same
time, some E and m values satisfy condition

 corresponding to the normal modes of
precession (Fig. 1).

According to the generally accepted assumption of
the weakness of the energy of anisotropy compared to
the energy of exchange, when

the nutations behave differently in three energy
ranges, each of which is characterized by qualitatively
different allowed values of m and lz (Fig. 2). Such a
nontrivial profile of the energy excitation spectrum of
perfect AFM particles and its effect on physically
observed magnitudes were carefully analyzed using the
temperature evolution of Mössbauer spectra in [4] as
an example. It is worth noting that since the period of
high-frequency nutation is much shorter than the
characteristic times in most experimental techniques
(particularly Mössbauer spectroscopy), the observed
characteristics will depend on the average (over the
period of nutation) values of  components
defined by Eq. (4). For perfect AFM particles [4],
when 

(5)

where

and when ,

(6)

With an uncompensated magnetic moment in an
AFM particle characterized by parameter

differential Eqs. (3) change slightly:
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Fig. 1. Trajectory of the motion of sublattice magnetiza-
tion vectors  and  of an ideal AFM particle:
(top) normal precession modes with 
and  for E/A = −1.003
(left) and −0.997 (right); (bottom) nutations with m = 0 for

the same energy values ( ). The points indicate
the minimum and maximum values of M1z and M2z pro-
jections during nutation. Here and below, the calculations
were performed for K/A = 0.01.
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(7)

where  and the integral of motion is
also the total magnetic moment projected onto the
anisotropy axis  However, these equa-
tions already have no trivial analytic solutions like
those for perfect AFM particles (β = 1) and the nuta-
tion characteristics for the fixed E and m values are
found by numerically solving the fourth-order equa-
tion

(8)

The type and characteristics of the self-consistent tra-
jectories of motion of vectors  and  are neverthe-
less similar in both cases.

Examples of results from such calculations are
shown in Fig. 3, where the projection of antiferromag-
netic vector  is introduced for com-
parison with ideal AFM particles. As we can see, the
general solution in the form of three normal modes of
the self-consistent precession of vectors  and 
around an easy axis coated with a layer of nutation is
retained even at the uncompensated moment. At low
energies, however, the range of allowed m (absolute)
values will be limited from below: 
so only values  will be accept-
able at the energy minima; at energies above a certain
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value,  is allowed (Fig. 3). The maximum
(absolute)  values are attained for
homogeneous precession modes 2 and 3. In analogy
with perfect AFM particles [4], the nutation of sublat-
tice magnetization varies in three ranges of energy:

When , there are two possible solutions of
Eq. (8). The minimum and maximum (absolute) lz

values of the determined energy, and thus the maxi-
mum range of nutation around the polar angle, are

( )min 0 m E =
( ) ( )max  m E m E= ±
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Fig. 2. Allowed values of m and lz projections for ideal
AFM particles. The bold lines with numbers indicate the
normal modes of the homogeneous precessions of sublat-
tice magnetic moments with 
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Fig. 3. Allowed values of m and lz projections for ideal (β =
1) and uncompensated for AFM particles (β < 1). The dot-
ted lines correspond to the normal modes of the homoge-
neous precession of sublattice magnetic moments.
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observed when  At the same time,
the extreme values of lz and the range of nutation in the
two potential wells corresponding to the two pairs of
real roots of Eq. (8) are found to be different, in con-
trast to perfect AFM particles. However, the symme-
try relative to the simultaneous change in the sign of
projection m and lz (or m1z) is retained. The greater the
absolute value of m for a given energy, the smaller the
range of nutation in both potential wells, attaining

 when homogeneous precession mode
1 is achieved. With a further increase in the (absolute)
value of m, the nutations in the potential well corre-
sponding to mode 1 (the two complex roots of Eq. (8))
vanish, and the range of nutation in the other potential
well (the two real roots of Eq. (8)) shrinks to

 when homogeneous precession
modes 2 and 3 are achieved.

The next range of energies,  (
corresponds to the maxim energy for excitation branch 1),
in which three modes of homogeneous precession also
coexist (Fig. 3), consists of three different ranges
according to m. The maximum spread of nutations in
both potentialwells (the two real and two complex
roots of Eq. (8)) is achieved when m = 0. As the abso-
lute value of m for a fixed energy rises, the type of solu-
tion remains unchanged until  when
mode 1 of homogeneous precession is achieved in the
local energy minimum (Fig. 3). With a further increase
in the (absolute) value of m, the situation is similar to
that in the previous energy range: two ranges of nuta-
tion and two pairs of real roots of Eq. (8) up to

 and then one range of nutation (two
real and two complex roots of Eq. (8)) until

 Finally, in the third energy range

, all possible values of m at a fixed energy
result in two real and two complex roots of Eq. (8),
while nutations spread in both potential wells up to

 when modes 2 and 3 of homoge-
neous magnetization precession are achieved.

As for calculating the longitudinal magnetization
components of the sublattices, their average (over the
range of nutation) values for fixed E and m can be cal-
culated via the common transformation of the integral
presented by Eq. (7) to the canonic form of a first-
degree elliptic integral by introducing quadric polyno-
mial  with known roots  (i = 1,

2, 3, 4) to the product of binomials with respect to 
The Mössbauer spectra of an ensemble of ran-

domly oriented AFM particles in the simplest limiting
case of slow (compared to the frequency of precession
and the reverse lifetime of an exited nucleus) sublattice
magnetization relaxation can be calculated using the
results reported in [4, 8], generalized for an uncom-
pensated for spin. The equilibrium state of the ensem-
ble of particles at fixed temperature T is thus described
by a Gibbs distribution with respect to quasi-station-
ary states (the precession and nutation orbits of vectors

 and ) with fixed E and m(E) values), each of
which is characterized by the average values of the lon-
gitudinal magnetization components of sublattices

 and 

(9)
where V is the particle volume and С is the normaliz-
ing constant. The cross-section of the absorption of
gamma-quanta with energy  when there is no
hyperfine quadrupole interaction is defined as

(10)

where the partial absorption spectra corresponding to
quasi-stationary states are determined by Lorenzians

 [4, 8].
For a Néel ensemble of slowly relaxing AFM parti-

cles, we must also average over the random value of
uncompensated for spin, e.g., with respect to the
Gauss distribution of parameter β with average value

 and width  The typical absorption spectra of
ensembles of slowly relaxing ideal (β = 1) and Néel
(   = 0.03) AFM nanoparticles are presented in
Fig. 4. Calculations do reveal the above features of the
energy spectrum of AFM particles and their emer-
gence in the absorption spectra: a transition from a
well-resolved magnetic superthin structure at low
temperatures to a high-temperature single line against

a magnetic hyperfine structure with strikingly asym-
metric lines at intermediate temperatures and a high-
temperature single line in accordance with quantum-
mechanical calculations on the macroscopic scale
[3, 7]. Our calculations confirm yet another important
conclusion following from the quantum model: the
presence of an uncompensated spin in the slow relax-
ation regime does not change the qualitative behavior
of the spectrum shapes of ideal AFM particles as the
temperature varies, but results in only slight quantita-
tive corrections in the central part of the spectrum that
are obvious at high temperatures. Additional consider-
ation of sublattice magnetization nutations evens out
this difference compared to the data from [8], where
only homogeneous precession modes were taken into
account.

( ) ( )min  .m E m E= ±

1( ) ( )m E m E= ±

= ± max( ) ( )m E m E

( )1
maxA E E− ≤ ≤ ( )1

max  E

= ± 11( ) ( ),m E m E

= ± 1( ) ( ),m E m E

( ) ( )max  .m E m E= ±

( )1
max  E E≥

( ) ( )max  ,m E m E= ±

( )− β1 1, ,  z zF m m m E ( )
1

i
zm

2
1 .zm

�

1M
�

2M

( )1 ,zm E m ( ) ( )= − β2 1, , :z zm E m m m E m
−= B( , ) ,EV k TW E m Ce

γ = ω�  E

( ) ( )
( )

( ) ( )( ) ( ) ( )( )
=

= + −∑∑∫ ∫
2

a

1

σσ ω ω, , ω, , ,
2

j j
iz iz

i jm E

dEW E dm L m E m L m E m

( )ω,L x

β=  0  βσ .

=β  1, βσ



BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES: PHYSICS  Vol. 81  No. 7  2017

EXCITATION SPECTRUM AND MAGNETIC DYNAMICS 905

The normal precession modes of vectors  and
 the excitation branches in the energy spectrum,

and the allowed values for sublattice magnetization
nutations of AFM particles with β = 0.5 shown in the
bottom panel of Fig. 3, formally correspond to ferro-
magnetic particles. Such precession modes corre-
spond to classic FM resonance theory [11], which is
characterized by the low- and high-frequency preces-
sion of sublattice magnetizations. Normal mode 1 in
Fig. 3 can be attributed to the low-frequency self-con-
sistent precession of oppositely directed vectors 
and  while normal modes 2 and 3 belong to the
high-frequency precession of these vectors at different
angles to the anisotropy axis. 
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The absorption spectra calculated for β = 0.5 are
displayed in the right column of Fig. 4, and are com-
parable to the spectra simulated in the simplified
model in [8]. The difference between the partial spec-
tra for the two magnetic sublattices grows monotoni-
cally at slow relaxation as the temperature rises, and
both the resulting spectrum and the two partial spectra
reveal a specific magnetic hyperfine structure with
lines of  quasi-triangular shape against the distorted
five-step base at high temperatures. This profile of
absorption spectra is evidently due to partial contribu-
tions from excitation branches 1, 2, 3 in the energy
spectrum for the corresponding homogeneous preces-
sion modes and their appropriate nutations for β = 0.5
(Fig. 3). These spectral shapes have often been
observed in experiments (see Refs. in [12]).

Fig. 4. Mössbauer absorption spectra of 57Fe nuclei in an ensemble of ideal (β =  1)  AFM particles (left), AFM particles with a
Gaussian distribution (  and  = 0.03) of an uncompensated magnetic moment (center) and ferromagnetic particles with
β =   0.5 (right). The calculations were performed within the limits of slow relaxation for different values of effective energy barrier
KV/kBT in the presence of quadrupole interaction with constant q (points) and its absence (q = 0, solid lines): q = 0.35 mm s−1

and Hhf = 500 kOe.
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CONCLUSIONS
A formalism for describing the thermo- and mag-

netic dynamics of a Néel ensemble of AFM particles
with an uncompensated magnetic moment was elabo-
rated in a generalized continual magnetic dynamics
model for an ensemble of ideal AFM particles in a
two-sublattice approximation. This enabled us to
develop a theory of Mössbauer absorption spectra for
such materials that can be applied in the analysis of
experimental spectra. Calculations within the pro-
posed macroscopic model confirm the basic conclu-
sions of the quantum-mechanical model developed in
[3, 7] for an ensemble of AFM particles.
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