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Abstract—Irregularities in the cross section of electron scattering off hydrogen and hydrogen-like He+, Li++,
and Be+++ ions are studied using an s-wave model. The resonance structure and irregularities in the scattering
data are compared. A unified approach based on an exterior complex scaling method is used in performing
calculations. The potential splitting approach is used for calculations of scattering in systems with asymptotic
Coulomb interactions.
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INTRODUCTION

Accurately solving the quantum scattering problem
for systems of several particles with Coulomb interac-
tion is of great importance in different fields of mod-
ern physics (nuclear, atomic and molecular). This is,
however, a very difficult task from both a theoretical
and a computational point of view, due to the complex
asymptotic behavior of a wave function in coordinate
space [1]. There is thus growing interest in methods in
which the scattering problem can be solved via the
Schrödinger equation with the simplest boundary
conditions. One approach that meets this criterion is
the complex scaling method in [2–4].

Analysis of theoretical and experimental scattering
cross sections often indicates there are a number of
irregularities in their behavior, e.g., peaks, dips and
jumps. These irregularities are usually associated with
resonance states being in the system, i.e., states with
finite lifetimes. The Breit–Wigner formalism is often
applied to describe the behavior of scattering data in
the vicinity of resonance [5]. However, it can be used
only in the neighborhood of narrow isolated reso-
nances. Generally, the contributions from different
resonant states can overlap and significantly alter the
behavior of a scattering cross section. The effect of
wide resonances can be hard to identify but cannot be
ignored. The most complete picture of scattering can
thus be built when there is a calculated scattering cross
section and the positions and widths of the resonances
are obtained independently. The complex scaling
method provides a mathematically correct way of cal-
culating the resonances of a system [6].

In this work, we present a joint description of scat-
tering processes and resonances in an s-wave model of
electron scattering off hydrogen and hydrogen-like He+,
Li++, and Be+++ ions. A corresponding model for

hydrogen was proposed by Temkin [7] and Poet [8]
and is known as the Temkin–Poet (TP) model. It can
naturally be generalized to one-electron ions. Though
the TP model represents a simplified approach to the
problem of three-particle scattering, it retains many
key features of the original task. This model is often
used to test different approaches to solving the scatter-
ing problem, allowing us to use relatively moderate
resources as compared to the full task computation.

A unified approach based on the method of exte-
rior complex scaling is used in calculating resonances
and the processes of scattering. The unified approach
allows us to minimize calculation errors and makes it
much easier to compare results. A newly developed
method of potential splitting is used to solve the prob-
lem of scattering with Coulomb interaction [9, 10].

POTENTIAL SPLITTING METHOD
IN THE TP MODEL

The Hamiltonian of the TP model for ions is writ-
ten in the form

(1)

where  is the distance between the nucleus and the
i-th electron; Z is the charge of nucleus; and the elec-
tron–electron potential in the s-state is  =

 Wave function Ψ of the system satisfies
the Schrödiinger equation with Hamiltonian (1). Due
to the identity of electrons, the wave function must be
symmetrized with respect to the permutation of elec-
trons. Symmetrized wave function  is given by

(2)
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where states with spin S = 0.1 correspond to the singlet
and triplet states, respectively. Permutation operator

 swaps the places of coordinates  and  Since the
permutation operator commutes with Hamiltonian (1),
the symmetrized wave function satisfies the same
Schrödinger equation as the wave function Ψ.

Let us briefly describe the potential splitting
method in the TP model [10]. We introduce indicator

 of domain ,

 , (3)

and its complement  The potential is
defined by

(4)

Asymptotic Hamiltonian is fixed in the terms
of potential

(5)

The role of an incident wave in the potential split-
ting approach is played by solution to Schrödinger
equation  = . This solution can be written
in explicit form

(6)

where  is the function of the bound state of a
two-particle system with energy  Momentum  of
an incident particle is related to total energy E of the
system:  +  Function  satisfies the
equation

(7)

Its explicit expression can be found in [10].
Using this representation for an incident wave, we

can rewrite the Schrödinger equation for function
in inhomogeneous form. By writing the entire wave

function in the form

(8)

we obtain the following inhomogeneous equation for :

(9)

Since the right-hand side of this equation is non-
analytical when  we can only use the method of
exterior complex scaling with radius  Exterior
complex scaling can be used, since the solution to (9)
and the right side of this equation remain finite upon
turning the coordinates in the upper complex half-
plane. After applying complex scaling to Eq. (9), the
solution to the transformed equation is diminished
rapidly at great distances, so the equation can be
solved with zero boundary conditions at infinity; this

greatly simplifies formulation of the boundary value
problem. In the region not subjected to complex scal-
ing,  the solution to the transfromed equation
coincides with the that of original one, allowing us to
obtain the correct solution at fairly great R.

Having obtained the solution to (9), we can use the
familiar asymptotics in [1] by projecting the solution onto
the pair state in an output channel. Singling out the
asymptotic behavior of the wave function, we find the
amplitude of scattering from channel i into channel j :

(10)

In the latter equation, an outgoing Coulomb wave
 is defined in the terms of regular  and

irregular  Coulomb functions

where  =  is the Sommerfeld parameter.
The scattering cross sections are expressed through the
amplitudes in the standard way:

RESULTS AND DISCUSSION

The finite element method in [10], used earlier for
calculating resonances in three-body systems [11], was
employed to find the numerical solution to Eq. (9).
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The parameters of the numerical scheme were chosen
so that the error did not affect the results within the
specified accuracy. The radius of complex scaling was
chosen equal to that of potential splitting,  and
was 91 a.e. for all of the investigated systems.

The calculation results for different systems are
easily compared using specially chosen units of
energy: threshold units (t. u.) [12, 13]. These units
depend on the investigated system and are determined
in terms of atomic units (a. u.):

(11)

The bonding energy was therefore the same for all
of the investigated systems: 1 t. u. These units are used
below unless otherwise specified.

Figure 1 shows the computed cross sections of sin-
glet scattering in channel  for hydrogen atoms
and He+, Li++, and Be+++ ions . The energy of scatter-
ing is counted from the ground state, and the values of
the cross sections are multiplied by  for easy com-
parison of different systems. There is a considerable
difference between scattering on hydrogen and on
ions: there are no oscillations or resonance peaks in
the scattering cross section for hydrogen at low ener-
gies. These differences are due to the lack of asymp-
totic Coulomb interaction with hydrogen atoms. The
behavior of the scattering cross sections of ions has
common features: a single resonance in the vicinity of
0.6 t. u. and an endless series of resonances accumu-
lated close to (below) the two-body threshold with an
energy of 0.75 t. u. Such series also exist near subse-
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quent thresholds, but they are virtually indistinguish-
able in the channel 

In order to examine the near-threshold behavior of
scattering cross sections in more detail, let us consider
the transition cross sections  , and

 for Li++ shown in Fig. 2. We can clearly see
the series of resonances converging to thresholds with
energies of 0.88(8), 0.9375, and 0.96 t. u. Since the dis-
tance between thresholds shrinks as the number grows,
the resonances become narrower and their accurate
imaging becomes difficult. It is also important that
there are irregularities at the same energy in any open
scattering channel, but the amplitudes of peaks in dif-
ferent channels can differ significantly. This is in good
agreement with the Breit–Wigner multichannel for-
mula for the elements of a scattering matrix [14]:

(12)

Here, is the background phase;  is the com-
plex energy of resonance; and  is the partial reso-
nance width, which is not accurately defined as it is
difficult to calculate [15].

Determining the positions and especially the
widths of the resonances of scattering cross sections
shown in Figs. 1 and 2 can be quite challenging, par-
ticularly in the ranges of energy where there are many
resonances and they are narrow. In addition, the cal-
culations may need a very small energy step in order
not to miss possible features in the cross sections. In
this situation, preliminary determination of the posi-
tions and widths of resonances can help to identify
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Fig. 1. Normalized singlet scattering cross section as a
function of energy in channel 1s → 1s for the scattering of
electrons on hydrogen atoms (dashed-and-dotted line),
helium ions (dotted line), lithium ions (dashed line), and
berillium ions (solid line).
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Fig. 2. Singlet scattering cross section as a function of
energy in channels 1s → 2s (dashed-and-dotted line), 1s →
3s (dotted line), and 1s → 4s (solid line) for the scattering
of electrons on lithium ions.
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potentially interesting ranges of energy. The table
shows the energies of the deepest resonances in the
series converging to the second (−0.25 t. u.) and third
(−1/9 t. u.) thresholds. Except at the deepest level,
they form pairs with close values of the real parts of
energy and very different widths. These pairs of reso-
nances, like the pairs of bound states, correspond to
thesinglet and triplet states of the system. The triplet
states are narrower by several orders of magnitude,
corresponding to the almost complete lack of visible
resonance effects in the triplet scattering cross section.
This effect is entirely consistent with Breit–Wigner
formula (12).

CONCLUSIONS

We studied features in the scattering cross sections
of electrons on hydrogen and hydrogen-like He+,
Li++, and Be+++ ions using an s-wave model, and
compared them to resonances in the corresponding
triplet systems. The s-wave model is a simplified two-
dimensional variant of the three-body problem that
retains many important features of the full three-dimen-
sional three-body problem. A common approach based
on the method of external complex scaling is used to cal-
culate scattering processes and resonances. This
approach allows us to minimize calculation errors and
make a much more reliable comparison of the calcu-
lated scattering data and resonance states. The poten-
tial splitting method was used to solve the scattering
problem with asymptotic Coulomb interaction.

It should be noted that any comparison of the res-
onance structure in scattering cross sections and the
actual resonances of a system should include not only
an analysis of the resonance energies themselves, but
also one of the effect resonance levels have on the scat-
tering cross sections, as was done in [16] for two-body
systems. Generalization of the technique used there
would seem to be quite simple, but this has yet to be
done for three-body systems.
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Translated by G. Dedkov

Complex energy values of several resonances for helium ions (Z = 2), lithium ions (Z = 3) and berillium ions (Z = 4). The
energy is counted from the ionization threshold. The numbers in parentheses specify the decimal degree

Z = 2 Z = 3 Z = 4

–0.3614 – i 6.00 (–4) –0.4049 – i 3.61 (–4) –0.4276 – i 2.31 (–4)
–0.2924 – i 4.52 (–7) –0.3134 – i 3.81 (–7) –0.3247 – i 2.79 (–7)
–0.2860 – i 1.42 (–4) –0.3071 – i 1.22 (–4) –0.3192 – i 8.86 (–5)
–0.2710 – i 2.11 (–7)
–0.2688 – i 5.83 (–5)

–0.2831 – i 2.07 (–7)
–0.2810 – i 5.13 (–5)

–0.2898 – i 1.63 (–7)
–0.2880 – i 3.71 (–5)

–0.1608 – i 6.43 (–4) –0.1801 – i 3.86 (–4) –0.1902 – i 2.44 (–4)
–0.1361 – i 3.50 (–6) –0.1477 – i 2.71 (–6) –0.1539 – i 1.91 (–6)
–0.1326 – i 2.16 (–4) –0.1444 – i 1.74 (–4) –0.1511 – i 1.22 (–4)
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