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Abstract—The potential splitting approach is extended to a three-body Coulomb scattering problem. The dis-
torted incident wave is constructed and the driven Schrödinger equation is derived. The full angular momen-
tum representation is used to reduce the dimensionality of the problem. The phase shifts for e+−H and
e+−He+ collisions are calculated to illustrate the efficiency of the presented method.
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INTRODUCTION
The solution to the quantum three-body problem

of Coulomb scattering is difficult due to complex
boundary conditions for the wave function in different
asymptotic regions. Using the complex scaling of
coordinates allows us to avoid the use of exact bound-
ary conditions when solving the scattering problem.
This approach was first applied to the scattering of two
particles with short-range potential [1]. In [2], the for-
malism was extended to long-range (but non-Cou-
lomb) potentials. The authors proposed truncating the
potential at a certain distance, and then using external
complex scaling to bypass the non-analyticity of the
truncated potential. This approach, however, cannot
be used for Coulomb interactions. It is known that
when the truncation radius tends to infinity, the solu-
tion to the problem with a truncated Coulomb poten-
tial does not tend to the solution of the problem with
the full Coulomb potential. In [3–7], the authors pro-
posed a method to avoid this difficulty using the
potential splitting approach. Two-body single-channel
and multi-channel scattering problems were examined
in [3–5], and a three-body problem in the Temkin–
Poet approximation in [6, 7]. A three-dimensional
distorted incident wave for the split Coulomb potential
was constructed in [5].

In this work, we extend the potential splitting
approach to the problem of full three-dimensional
Coulomb scattering. We construct a distorted incident
wave and derive the inhomogeneous Schrödinger
equation. A representation of full angular momentum
is used to reduce the problem’s dimensionality. The
phases of scattering for positron collisions with hydro-
gen and helium positive ions are calculated in order to
demonstrate the proposed method.

STATEMENT OF THE PROBLEM

This work deals with the scattering in a system con-
sisting of three non-relativistic charged particles with
pair interactions. Jacobi coordinates  are used to
describe the system:

(1)

where indices α, β and γ represent the cyclic permuta-
tion of numbers . Vectors  and  fix the
position of particle α and its mass. The wavefunction
in the center-of-mass coordinate system obeys the
Schrödinger equation

(2)

with reduced masses  =  ,  =
 +  +  and Coulomb potentials
 =  Before a collision, the initial state

of two coupled particles is described by two-body wave
function  Multi-index  =  
includes quantum numbers corresponding to the
bound state and the index specifying which two of the
three particles form the bound state.

In the asymptotic region  
which corresponds to scattering without reconstruc-
tion, the wave function has the asymptotics
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(3)

The first term in (3) describes an incident wave; the
second is a superposition of scattered waves. Multi-index
A describes different bound states of two particles after a
collision; , the momentum of the third particle after
collsision; , the amplitudes of scattering; and

=  + , the Sommerfeld parameter of
Coulomb interaction. As a multiplier, the incident wave
contains the three-body Coulomb scattering function

 expressed explicitly through the degenerate
hypergeometric function 

(4)

In the asymptotic region,    which corresponds to reconstruction, the wave function
has the asymptotics

(5)

The problem is to determine the scattering ampli-
tudes and calculate such values as the phases of scat-
tering and different scattering cross sections.

POTENTIAL SPLITTING APPROACH
The complex scaling method allows us to solve the

problem of scattering using trivial zero boundary con-
ditions for the wave function at infinity. Rotation of
radial coordinates of the wave function in the upper
halfplane of the complex plane leads to the scattered
waves in the asymptotics of the wave function being
converted into exponentially decreasing functions that
can be made negligibly small by selecting the correct
boundary points. Along with the scattered waves,
however, there is an incident wave in the asymptotics
of the scattered wave function. After complex scaling,
this wave diverges exponentially, so a function in the
form of the difference between the wave function and
the incident wave is studied for correct application of
the complex scaling method [1]. This difference satis-
fies the inhomogeneous Schrödinger equation and is a
superposition of the scattered waves in all asymptotic
regions. The right side of the inhomogeneous
Schrödiger equation is the product of the potential and
an incident wave. If the potential is an exponentially
decreasing function, then the right side is finite after
complex scaling. Direct use of the complex scaling
method is in this case possible [2].

The potential is first truncated at a sufficiently
great distance, and the external complex scaling is
then applied to the equation. The right side of the

inhomogeneous Schrödinger equation remains finite
after external complex scaling under the condition that
the radius of external scaling is larger than that of
potential truncation. This approach cannot be used
when the potential has a Coulomb tail, since the solu-
tion to a problem with a truncated Coulomb potential
does not tend to the solution with full Coulomb poten-
tial so long as the radius of truncation tends to infinity.
It was because of this that the method of potential
splitting was developed for Coulomb scattering. A
two-body Coulomb problem was studied in [3–5], and
a three-body Coulomb problem in the Temkin–Poet
approximation in [6, 7].

Let us consider the potential describing the inter-
action between an incident particle and a bound pair
of particles:

(6)

This potentiial is presented in the form of internal
and external components:

(7)
where

(8)

Distorted incident wave  is introduced
as a solution to the three-body scattering problem with
potential  + 
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In analogy with the non-Coulomb case, we study
wave function  =  − 
defined as the difference between the wave function

and the distorted incident wave. By definition, this
function obeys an inhomogeneous Schrödinger equa-
tion whose right side is restricted in :

(10)

Since function  is the difference between
the solutions to the two scattering problems, the
asymptotics of incident waves compensate for one
another, and only scattered waves are found in the
result. Equation (10) is thus suitable for use in external

complex scaling and numerical solutions. As a first
approximation to function , we can use
function  which is the solution to (9) if
external potential  in it is replaced with the
corresponding asymptotic expression when 

(11)

In this equation, the variables are separated and the
solution is presented in the form of the product  ×

 =  ×  in which function

 determined in [5] is used.

FULL ANGULAR MOMENTUM 
REPRESENTATION

The wave function is written in the form of an
infinite series:

(12)

where  is the set of Euler angles describing rotation
from the lab coordinate system to a system rigidly
associated with three particles. The rotating coordi-
nate system is chosen such that the new OZ axis is
directed along vector  and vector  lies in the
plane formed by the new OX and OZ axes. Basis func-
tions  describe the states with determined
angular momentum J and parity τ. They are explicitly
expressed through Vigner’s D-functions:

(13)

Each function  ×  satisfies the sec-
ond-order finite system of differential equations in
partial derivatives [8]. With zero angular momentum,
this system is reduced to a single inhomogeneous
equation:

(14)

In order to simplify the right part of the equation,
we assume that the target is in a state with zero angular

momentum before a collision. Coefficient  was cal-

culated in [3]. The asymptotics of function  ×
 in the channel without reconstruction has

the form
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where  are spherical harmonics and  represents
the constant coefficients. The amplitudes of the tran-
sition to different excited states are calculated by the
formula

(16)

where represents the constants that depend on R,
as determined in [3]. Phase  of scattering with zero
total angular momentum is calculated from the ampli-
tude using the formula

(17)

with Coulomb phase The cross section of target
excitation at  is calculated using the formula

(18)

RESULTS AND DISCUSSION
Using the above method, we calculated the phases

of elastic scattering with zero full angular momentum
for e+−H and e+−He+ collisions. The numerical
approach is based on the finite difference method. A
similar approach was used in [9, 10] to calculate the
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positions of resonances in three-body systems via the
complex scaling method. The scattering problem is
reduced to solving the system of linear algebraic equa-
tions.

The scattering of positrons on hydrogen atoms has
now been thoroughly studied, and the literature
[11‒15] on this subject is fairly extensive. This prob-
lem may therefore be seen as a test to verify the
method. In addition, many other formulas are simpli-
fied, since there is no asymptotic Coulomb interaction
between positrons and hydrogen. Figure 1 shows the
convergence of the s-wave scattering phase of posi-
trons on hydrogen atoms as radius R grows for differ-
ent values of incident positron momentum  Con-
vergence is faster for higher values of the momentum.
The values to which the phases converge in the
depicted energy range are in fair agreement with the
results of other authors. With positron scattering on
helium ions, there is asymptotic Coulomb interaction
between the incident particle and the target. A number
of works have been devoted to this problem [16–20].
Figure 2 shows the dependence of the s-wave scatter-
ing phase depending on the energy, compared to the
results of [16] and [17]. As can be seen, the agreement
with the results from other calculations is very good.

The potential splitting approach thus allows us to
perform accurate calculations of partial amplitudes

0
.Ap

Fig. 1. Phases of elastic scattering with zero total angular
momentum as functions of splitting radius R for e+−He+ colli-
sions. Our results correspond to the following momenta of inci-
dent positrons:  a. u. (white dots);  a. u.
(triangles);  a. u. (black dots); and  а. u.
(crosses). 
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and phases for a three-body Coulomb scattering prob-
lem without resorting to additional unjustified approx-
imations.
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