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Abstract—A generalized version of the R-matrix theory is used to determine the amplitudes of sequential n-
step statistical nuclear reactions. T-invariance conditions for these amplitudes are analyzed. Within the scope
of the unified theory, integral formulas are constructed for the decay amplitudes of the intermediate states of
compound nuclei via the matrix elements QHP of the system Hamiltonian H, where Q and P operators per-
form projections onto resonance and energy-continuous states of the system, respectively.
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INTRODUCTION
Bohr and Mottelson [1] constructed a formula for

amplitude  of a sequential two-step statistical
nuclear reaction of the form  →  in
the system of the center of mass where a compound
nucleus in resonance state  with total spin  its pro-
jection , and internal energy  is formed at the
first stage of a reaction in which particle a with internal
energy , total spin , and relative orbital moment

 strikes a target nucleus A with spin  and internal
energy . At the second stage of the reaction, reso-
nance state  decays to emit stable particle b and form
stable final nucleus B. Using the formalism of the
R-matrix theory of nuclear reactions [2], the ampli-
tude of the above reaction  was presented [1] as

(1)

where E is the total energy of the reaction, determined
by the formula

(2)

with  being the kinetic energy of relative motion of
particle a and target nucleus A, and  being the total
decay width of state  Quantity  ←  in
Eq. (1) is the amplitude of the formation of resonance
state  of the compound nucleus in the аА channel
and coincides with amplitude  ←  of
the decay of the above state into this channel. This
quantity is also related to real amplitude  of the

partial decay width of resonance state  and potential
scattering phase  in this channel via the formula

(3)
The following relationship was proposed in [1] to

determine the value of amplitude  ← :

(4)

where  is a normalized wave function of reso-
nance state  and  is a channel function defined
[2] as

(5)

with  and  being internal wave functions of
particle a and target nucleus A, and  being
a spherical function that describes the relative orbital
motion of particle a and target nucleus A. At the same
time, the relative radial motion of particle a and target
nucleus A was in this case described by a regular radial
wave function  that was energy-normalized
to the δ-function. Bohr and Mottelson [1] assumed
that operator  that appears in Eq. (4) and causes the
decay of the resonance state  is a small part of the
system’s full Hamiltonian H. This representation was
justified because if the lifetime of a decaying state is
long compared to the periods of internal nuclear
motions, the decay can be considered as a perturba-
tion described by small operator  Taking the self-
adjointness of the operator  into account and using

,bB aA7

a A+ 0r b B→ +

0r 0
,rJ

0rM
0rЕ

AE aJ
al АI

AE
0r

,bB aA7

( ) ( )
( )

← ←
=

− + Γ∑ 0 0 0 0

0 00 0

,

,
2

r

bB aA

B b b r r r r A a a

r rr M

g I J l J M g J M I J l
E E i

7

,a A aAE E E T= + +

aAT

0rΓ
0.r

0 0
( r rg J M )A a aI J l

0r
( A a ag I J l

0 0
)r rJ M

0,aA rΓ

0r
aAδ

( ) δ← = Γ
0 0 0, .aAi

A a a r r aA rg I J l J M e

( A a ag I J l
0 0

)r rJ M

( )
( )

←
= π Ψ

0 0

0 0
2 ' ,

r r

A a a r r

aA aA aA J M

g I J l J M

U f R H

0 0r rJ MΨ
0,r aAU

( ){ }{ }
00

,
a I a a A AaAa a a r

aA I M l m I MR J M J Mr
U Y= χ Ω χ�

a IaI Mχ
A AI Mχ

( )a a aAl m RY Ω �

( )aA aAf R

'H
0r

'.H
'H



934

BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES: PHYSICS  Vol. 80  No. 8  2016

KADMENSKY, KOSTRYUKOV

Eq. (4), the following T-invariance condition for
amplitude  was obtained in [1]
for a T-invariant quantum system:

(6)

where wave functions  and  were defined as
time-inverse wave functions of states  and ,
respectively. Bohr and Mottelson [1] used Eq. (6) to
derive T-invariance condition  in Eq. (1) for a
sequential two-step statistical nuclear reaction:

(7)

where  is the amplitude of the time-reversed
nuclear reaction.

The results in [1] hold for decays associated with
weak and electromagnetic interactions, for which the
operator  is well defined. However, operator  in
Eq. (4) is not defined for decays related to such nuclear
interactions as α -decay, proton decay, cluster decay,
and nuclear fission, and its particular form can con-
flict with the assumption made in [1] about its small-
ness.

In this work, we plan first of all to prove that the
T-invariance condition for a quantum system is gener-
ally the T-evenness of its Hamiltonian H; second, to
construct a formula for the partial decay width of res-
onance state  of a compound nucleus under this con-
dition using the unified theory of a nucleus with allow-
ance for strong nuclear interactions; and third, to find
the T-invariance condition for the amplitude of a
sequential multistep statistical nuclear reaction using
the first and second results above.

T-INVARIANCE CONDITIONS
FOR QUANTUM SYSTEMS

As understood in classical and quantum mechanics,
invariance with respect to time reversal or T-invariance
means [1, 3–5] that for every possible state of a system
there is a time-inverse state described by the same
equations of motion.

To analyze T-invariance conditions for a quantum
system, let us consider the Schrödinger equation for
wave function  with a full set of spatial, spin, and
other coordinates of system ξ and time-independent
Hamiltonian 

(8)

Wave function  corresponds to the tradi-
tional time description of a system from the past into
the future when time changes from  to 
and is represented [1] via wave function  of the
system at initial moment  as

(9)

Function  coincides with wave function
 which is the solution to the Schrödinger steady-

state equation

(10)

Following the concepts of [3–5], we introduce the
system’s time-inverse wave function  linked to
wave function  via the relation

(11)

where τ is a time-inverse operator and has [1, 5]
the form

(12)
with K being a complex conjugation operator and O
being a unitary operator that is by definition related to
Hermitian conjugate operator :

Let us find a condition under which wave function
 is a solution to the same Schrödinger equation

in Eq. (8) as function  and may thus be consid-
ered time-inverse with respect to original wave func-
tion  We subject Eq. (11) to the action of the

operator  to obtain

(13)

At the same time, when operator K acts upon
Schrödinger equation (8) and we substitute ,
Eq. (8) can be transformed into

(14)

where  is an operator that is a complex conjugate of
operator H.
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Substituting (14) into the right-hand side of
Eq. (13) and using the definition in Eq. (11), we get
the equation

(15)

For wave function  similar to function
 to be a solution to Schrödinger equation (8),

the following condition must be fulfilled [5]:

(16)

We shall consider the meaning of this condition
below.

Using the formulas in Eqs. (9) and (12), the time
dependence of function  can be presented as

where  is a time-reversed wave function 
defined by the formula

(17)

The reason why for time-independent function
 there is function  which coincides with

time-reversed function  in Eq. (17) and satisfies
the same Schrödinger equation (10) is that functions

 and  describe quasi-stationary [1] processes
that are characterized through initial and boundary
conditions by probability-flow density vectors that
depend on the direction of f low of time.

We shall now study matrix element 
of arbitrary operator Q, where  and  are the
eigenfunctions of Hamiltonian H. If we use the rela-
tionship in Eq. (17), this matrix element can be written
[5] in the form

(18)

where  is time-inverse with respect to operator Q,
defined as

(19)

It then follows that the time-inverse operators of
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and spin  can be expressed via original operators r, p,
L, and s as

(20)

if we consider their self-adjointness.
We shall assume operator Q is T-invariant if its

time-inverse  coincides with original operator Q
when

(21)
Arbitrary operator Q can generally be presented as

the sum

(22)

where ( ) is a T-even (T-odd) part of operator Q
that does not (does) change sign when time is
reversed:

(23)

Operator Q is then T-invariant in the sense of Eq. (21)
if it contains only T-even component  with time
reversal.

We are now in a position to consider the physical
meaning of the condition in Eq. (16). If we allow for
the self-adjointness of operator H, this condition
becomes

(24)

where operator  is time-inverse with respect to oper-
ator H defined by the formula in (19) if we replace Q
with H. The condition in Eq. (24) is for the T-invari-
ance of Hamiltonian H under which this Hamiltonian
only contains the T-even component  It then fol-
lows that the T-invariance of a quantum system can be
violated only if Hamiltonian H contains T-odd mem-
bers  e.g., the terms like  that were
considered in [6].

AMPLITUDE OF A SEQUENTIAL MULTISTEP 
STATISTICAL NUCLEAR REACTION

Let us now try to describe a sequential n-step statis-
tical nuclear reaction of the form  →  +

 +  +  +  in
which emitted particles  and final nucleus B
are stable but there exist decay resonance states

 of the intermediate nuclei. We can take
advantage of the generalization of the standard for-
malism of the R-matrix theory of nuclear reactions
that was developed in [2] to describe a case where
nucleus 1 that appears as a result of the above two-step
statistical nuclear reaction is unstable and can disinte-
grate from resonance state  with the formation of sta-
ble particle  and stable nucleus B. Such a generaliza-
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tion allowed Lane and Thomas [2] to describe a
sequential three-step statistical nuclear reaction in
which three stable particles  appear in the final

channel. Using the method developed in [2], the
amplitude of  of the sequential n-step statis-
tical reaction can then be presented as

(25)

where total reaction energy Е is determined by Eq. (2).
If we use the results in [7–9] of the unified theory

of nucleus, the amplitudes in Eq. (25) can be
expressed via integral formulas that are exemplified
below for amplitude  of the decay
of resonance state  of a compound nucleus:

(26)

where operators P and Q are projection operators
( ). Operator P projects wave function 
(10) of the system for a scattering problem on the
internal states of particles a and A that correspond to
open decay channels with infinite motion of particles
and channel function  Operator Q in turn projects
the above function  (10) on the resonance states
of a compound nucleus of the  type with wave func-
tions  that do not have open decay channels
and thus have discrete energies  that correspond to
finite movements.

The formula in Eq. (26) is in fact a generalization
of Eq. (4) in [1] that allows for different decay chan-
nels of resonance state  including decay channels
that include such strong nuclear interactions as
α-decay, proton decay, cluster decay, and nuclear
fission.

RELATIONSHIP BETWEEN DIRECT
AND TIME-REVERSED AMPLITUDES

OF A SEQUENTIAL MULTISTEP
STATISTICAL NUCLEAR REACTION

As defined above, a necessary condition for the
T-invariance of a quantum system is the T-evenness of
the Hamiltonian of the system in Eq. (24). Let us study
the above amplitude  for a sequential multistep
statistical nuclear reaction under the effects of a time-
reversal operation with allowance for this condition.

We shall first analyze the T-invariance condition
for the decay amplitudes of resonance nuclear states of
the form  (26) contained in the
formula in Eq. (25). We use the formula in (18) and
transform the matrix element that defines amplitude
(26) as

(27)

where   and  are time-inverse with
respect to wave function  of resonance state 
of the compound nucleus, the regular radial wave func-
tion of relative motion of particle a and target nucleus A,
and channel function , respectively, while

 is a time-reversed operator 
defined by Eq. (19). If we use this formula and allow
for condition (24) of the T-invariance of Hamiltonian
H, operator  can be presented as

(28)

In light of transformation (28), formula (27) can be
written as

(29)

which leads to a T-invariance condition for g-ampli-
tudes of the form

(30)

from which it follows that time-reversed amplitude
 ←  can be constructed by moving

from operator  the noncoincident operator
. This corresponds to moving from the

decay of resonance state  into the aA channel to the
inverse process of the formation of the resonance state
from the aA channel.

It should be noted that T-invariance condition (30)
is different from its counterpart in Eq. (6) that was
derived in [1], in the sense that operator  in (6) is
replaced with the nondiagonal matrix element of the
full system Hamiltonian , which changes in
the time-reversal operation and is generally not small.
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in Eq. (25) and associated with the product of propa-
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does not change in the time-reversal operation, we can
use the above formula in (30) and present the T-invari-

ance condition for the amplitude of sequential multi-
step statistical nuclear reaction  as

(31)

It follows from Eq. (31) that three operations must
be performed in order to move from the matrix ele-
ment of original reaction  to the matrix ele-

ment of time-reversed reaction : the initial
and final states must be swapped in amplitude; these
states must be changed to their time-reversed states;
and the sequence of amplitudes in reaction 

 +  +  +  +
 must be reversed to the inverse sequence
 +   +   +

 →  which requires moving from the
matrix of original reaction  to the matrix of inverse
reaction 

CONCLUSIONS

It was shown that the T-invariance condition for a
quantum system is the T-evenness of its Hamiltonian.

Using the unified theory of a nucleus [7, 9] and projec-
tion operators Q and P, the integral formula in Eq. (26) was
constructed for amplitude  of the
decay of resonance state . This formula includes a
nondiagonal matrix element of the system Hamilto-
nian with respect to the operators Q and P that relates
the wave functions of the resonance states with those
of the open decay channels. Using a generalized ver-
sion of the R-matrix theory of nuclear reactions [2]
that allows for the appearance of unstable nuclei in the
decay of resonance states, the amplitude of the
sequential n-step statistical nuclear reaction was con-
structed via the decay amplitudes of the resonance
states of intermediate nuclei.

It was shown that the time-reversed amplitude of
the sequential multistep statistical reaction coincides

with the original amplitude if the following three oper-
ations are performed:

The wave functions of the initial and final states are
swapped;

These functions are replaced with their time-
reversed counterparts;

Inverse reaction matrix  is used instead of the
matrix  of the direct reaction.

Results were obtained that can be used in describ-
ing the characteristics of ternary and quaternary
nuclear fission reactions, given the sequential mecha-
nisms of these processes.
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