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INTRODUCTION

Self�oscillators with delayed feedback are widely
used in radiophysical and optical systems [1, 2]. Many
objects found in nature can be described using differ�
ential equations with delay arguments. Systems with
delayed feedback play a special role in, e.g., the mod�
eling of many biological objects [3, 4].

Knowledge of the structure of an object under
study, formalized as a mathematical model, offers a
number of possibilities to a researcher that allow him
to predict a system’s behavior over time and as a result
of changes in the governing parameters [5]. In addi�
tion, information on the structure of a model equation
enables us to solve the problem of reconstructing the
parameters of a system using its time series, often
helping to avoid direct invasive measurements that are
sometimes impossible or associated with ethical prob�
lems. The development of such approaches is there�
fore of particular importance in acquiring fundamen�
tal knowledge of animate objects and solving applied
problems of medical diagnostics.

However, the problem of reconstructing parame�
ters is complicated, since there is no universal method
of reconstruction that allows the dynamic reconstruc�
tion of any system. As a rule, this problem can be
solved by using methods aimed at narrow groups of
systems and considering features of the structure of
specific objects, formalized in mathematical models.

The problem of reconstructing biological systems
of practical importance is often associated with addi�
tional challenges driven by the periodic dynamics of
many such systems. The reconstruction of parameters
is in this case complicated by the simplicity of their
oscillation modes, which provide very little informa�
tion on a studied system. In such cases, methods of
reconstruction that proved to be useful in analyzing

chaotic systems [6] are either inapplicable or of lim�
ited applicability. In full�scale experiments, research�
ers also inevitably deal with data distorted by noises of
various natures.

The aim of this work was to explore the applicabil�
ity of known approaches and our approach to recon�
structing the parameters of systems with delayed peri�
odic time series in presence of noises. Our object of
study was the system of baroreflex control over mean
arterial pressure, which is essential in physiology and
medicine [3].

METHODS OF RECONSTRUCTION

This work considers methods aimed at reconstruct�
ing the parameters of a delayed�feedback oscillator
(DFO) described by the model equation

(1)

where  is the delay time,  is the time lag, and f is a
nonlinear function.

A key step in reconstructing delay systems is deter�
mining delay time  As a rule, minor mistakes made
in estimating  lead to rapid growth of the error in
estimating the rest of a system’s parameters [7]. In this
work, we used the accuracy of estimating delay time as
a criterion for the efficiency of the compared
approaches, taking one unit of discrete time as admis�
sible error. If  is reconstructed precisely, other
parameters can be reconstructed using our method.

We compared five methods: our original method,
based on the use of an additional synchronous
response system [8]; estimating the autocorrelation
function (ACF); constructing the statistics of extreme
value distributions N(τ) [6]; analyzing informational
entropy I(τ) [9]; calculating the fill factor of a system’s
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trajectory in three�dimensional space, V(τ) [10]; and
estimating the smoothness of a system’s projected path
in a two�dimensional space, L(τ, ε) [11].

The method we propose for reconstructing delay
time is based on the use of an additional synchronous
response system. Time series x(t) of a system is deliv�
ered to the input of the auxiliary system, which is
structured similar to the one being studied but has a
feedback loop broken by a subtractor. At the subtractor
output, difference between signals z(t) = x(t) – ν(t),
where ν(t) is the signal at the output of the auxiliary
system’s lag element. If the parameters of the auxiliary
system are identical to those of the one being studied,
dispersion D of difference signal z(t) is determined
only by noises. When there is no noise, it is equal to 0.
If the parameters differ, dispersion value z(t) will be
high. A similar approach was used in building the cha�
otic system for transmitting secret information pro�
posed in [12].

To solve the problem of reconstruction, nonlinear
function f is parameterized using set of parameters 
Parameters  τ, and ε are determined by minimizing
the target function, dispersion D(τ; ε; ) of the signal
at the output of the auxiliary system’s subtractor.

OUR STUDIED SYSTEM

As our object of study, we selected the system of
baroreflex control over mean arterial pressure pro�
posed in [3]. The model equation for this system,
formed on the basis of results from physiological
experiments, is written with nonlinear function f:

(2)

Parameters α = 1, β = 2, r* = 1, and k = –1.65 pro�
posed in [3] were selected in approximating the depen�
dency obtained as a result of experimental studies
in vitro. With this set of parameters, the nonlinear func�
tion has a sigmoid form. When τ = 3.6 s and ε = 2 s (val�
ues typical of people with no health issues [3]), the sys�
tem displays periodic oscillations with periods of about
10 seconds, which corresponds to physiological obser�
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vations. To obtain the time series, Eq. (3) was numer�
ically integrated using the Euler method with a step of
0.1 s. The model system and its power spectra are
shown in Fig. 1.

The study of real systems is always complicated by
dynamic and measurement noises. In our numerical
modeling, we therefore examined the applicability of
methods for reconstruction with dynamic and mea�
surement noises of various intensities. Statistical anal�
ysis of the results required the processing of 100 events
at each fixed value of noise intensity. The intensity of
added noise is in this work presented as the percentage
of the mean�square deviations of a random process
and an autonomous system.

In contrast to measurement noises, the impact of
broadband noise on a system’s dynamics can in some
cases make it easier to reconstruct parameters by shift�
ing the path away from the attractor. Such modes pro�
vide more information about a system than periodical
modes. Random process y(t) affects a system’s dynam�
ics in the manner

(3)
Random process y(t) was a sequence of bipolar

rectangular impulses 2 s in duration, while the imme�
diate period changed randomly in the interval of 3 to
5 s. Such parameters of the exciting signal correspond to
physiological tests with forced breath or the mechanical
stimulation of a group of carotid baroreceptors [13].
Other types of impact were used as well in the course of
our studies: a harmonic signal, a periodic sequence of
impulses, and white noise. However, exclusive use of a
random sequence of bipolar rectangular impulses with a
low ratio proved to be the one most effective in recon�
structing the delay time of system (3).

RESULTS FROM NUMERICAL MODELING

The applicability of methods was compared using
an autonomous system of baroreflex control for recon�
structing parameters affected by a random sequence of
impulses and exposed to measurement noises. We used
events as long as 36000 intervals (360 significant peri�
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Fig. 1. (a) Time series, (b) power spectra. Dashed line denotes system (1) with no noise; fine lines, 10% dynamic noise and
4% measurement noise; bold lines, 10% dynamic noise.
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ods) in our analysis; this corresponded to a recorded
length of 1 hour and was the virtual limit of possibili�
ties when conducting an experiment in vivo.

The results from reconstructing τ0 obtained for a sys�
tem with no noises and systems with 10 and 50%
dynamic noises are presented in Fig. 2. Methods based
on building an ACF, on calculating the statistics of
extreme value N(τ) distributions, and on estimating

informational entropy I(τ) turn out to be inapplicable by
displaying extrema on the graphs at times close to half of
the characteristic period. The methodology based on cal�
culating fill factor V(τ) allows us to reconstruct the delay
time correctly with a probability of 0.99 when there is
dynamic noise with intensities of 5–50%. The results
from numerical modeling show that the method is inac�
curate with regard to the selected size of a free parameter
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Fig. 2. Restoration of  using (a) ACF; (b) N(τ); (c) I(τ); (d) V(τ); (e) L(τ, ε); (f) the auxiliary system. Dashed line denotes no

noise; fine lines, 10% dynamic noise; bold lines 50% dynamic noise. Vertical line denotes  = 3.6 s.
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(cube face size δ) when δ < 0.007. In our calculations, we
used fixed value δ = 0.0035.

The method based on estimating smoothness
L(τ, ε) allows precise reconstruction of the delay time
only if there are no noises, although in this case, events
with lengths of 10 characteristic periods are sufficient.
The approach we propose is based on the use of an
auxiliary system and allows correct reconstruction of
the delay time with a probability of 0.99 when there is

0–10% dynamic noise. The method of forming the
statistics of extreme value distributions starts to reveal
the local minimum value at the correct delay time with
levels of dynamic noise starting at 75%. As the level of
external impact grows, however, the minimum value
does not become absolute even if the length of an event
reaches 10000 significant periods.

When analyzing experimental data, time series
events generally include measurement noises. Figure 3
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Fig. 3. Restoration of  with 4% measurement noise and 10% dynamic noise, using (a) ACF; (b) N(τ); (c) I(τ); (d) V(τ);

(e) L(τ, ε); (f) the auxiliary system. The vertical line denotes  = 3.6 s.
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shows the results from reconstructing the delay time
when there are both dynamic and measurement
noises. If there is even 1% dynamic noise, the methods
based on calculating V(τ) and L(τ, ε) allow correct
determination of the delay time with probabilities no
higher than 0.5% at any level of dynamic noise.
Among the other approaches, methods based on using
an auxiliary system with synchronous response display
the best resistance to measurement noises, allowing
the correct determination of  with 0.99 probability
when there are both dynamic (up to 10%) and mea�
surement (up to 4%) noises.

We used our method and the approach based on
estimating smoothness of projection L(τ, ε) to restore
time lag ε and nonlinear function f. When using an
auxiliary system, the nonlinear function is parameter�
ized as

(4)

τ0

= 0 0( ) th( ),f t a b t

where  and  are parameters. Such approximation
allows precise description of function (2) with sigmoid
form using only two free parameters.

The step size was 0.1 when determining parame�
ters τ and ε. With no noises, the reconstruction of
system (1) parameters is possible using both methods
(Figs. 4a and 4b, dashed line). The result from least�
squares approximation with function (4), recon�
structed in the tabular form of a nonlinear function
with the current parameters, yields a = –1.65 and b =
1.00. These values of a and b coincide with the result
from approximating direct dependency (2) with func�
tion (4) using the least�squares technique.

Analysis of a noise�free event using the auxiliary
system allows correct reconstruction of values τ = 3.6 s
and ε = 2.0 s. The reconstructed parameters of the
nonlinear function are a = –2.3 and b = 0.6.

With 10% dynamic noise and 4% measurement
noise, the auxiliary system allows us to determine the
values of parameters τ = 3.6 s, ε = 2.0 s, a = –1.4, and
b = 1.2 (Fig. 4a, fine line). At such levels of noise, the
method based on calculating L(τ, ε) does not allow
reconstruction of the delay time, leading to a rapid
increase in the error of determining other parameters.
However, if the delay time is determined in advance
using the auxiliary system or by calculating the fill fac�
tor, the estimated smoothness of projection at fixed
value τ = 3.6 s produces ε = 1.3 s, a = –1.2, and b =
1.1 (Fig. 4b, fine line).

With 50% dynamic noise and no measurement
noise, these methods do not allow reconstruction of
the delay time. For both methods, we therefore used
τ = 3.6 s, determined earlier by calculating the fill fac�
tor. Reconstruction of parameters using the auxiliary
system in this case yields ε = 2.0 s, a = –1,4, and b =
1.2 (Fig. 4a, bold line). The technique that uses mini�
mization of L(τ, ε) allows us to obtain ε = 1.5 s, a =
⎯1.0, and b = 1.5 (Fig. 4b, bold line).

CONCLUSIONS

The aim of this work was to determine the possibil�
ities and explore the applicability of the proposed
method and several others used to reconstruct the
parameters of oscillators operating in the periodic
mode with delayed feedback and described by model
equation (1). The methods were compared by analyz�
ing periodic time series of a model system for the
baroreflex control of mean arterial pressure [3], with
both dynamic and measurement noises of different
intensities.

We showed that methods based on estimating the
autocorrelation function, information entropy, and
statistics of extreme value distributions cannot be used
to estimate the delay time of oscillators operating in
the periodic mode with delayed feedback.

The method we propose, which uses an auxiliary
system with a synchronous response, demonstrated
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Fig. 4. Results from reconstructing function (2) using
(a) the auxiliary system; (b) L(τ, ε). The dashed line indi�
cates no noise; the fine line, 4% measurement noise and
10% dynamic noise; the bold line, 50% dynamic noise.
Crosses denote function (2).
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the best resistance to measurement noises when deter�
mining τ.

Fill�factor calculations allow us to reconstruct the
delay of dynamic noises over the broadest range and is
inferior to our approach in terms of resistance to mea�
surement noise.

Determining the smoothness of a system’s pro�
jected path turns out to be the least demanding to the
length of an event when there is no noise, but it shows
high sensitivity to noise of various natures.

We also showed that when there is noise, we can
reconstruct the value of time lag ε and nonlinear func�
tions only using the proposed approach, which is
based on using the auxiliary system. At high levels of
dynamic noise, it is best to make a preliminary esti�
mate of τ by calculating the fill factor.
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