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INTRODUCTION

The structural quality of single crystals grown using
the pull�from�melt (Czochralski) technique depends
on the shape and growth rate of the crystallization
front. When growing a crystal, it is necessary to avoid
sharp variations in its diameter and ensure the maxi�
mum symmetry of the temperature field and the min�
imum temperature gradients near the crystallization
front [1]. A study of the convective heat exchange in a
melt showed that melts with any Prandtl numbers are
described by relations between dimensionless dynamic
parameters, including the Grashof, Marangoni, and
Reynolds numbers (Gr, Re, Ma), which characterize
the intensity and relative role of free and forced con�
vection at which the crystallization front will be a
plane [2]. These conclusions have been confirmed in
experiments with fusible substances. In [2], investiga�
tions were conducted ignoring heat transfer from the
crystal to the environment. In the real high�tempera�
ture technological process, however, heat transfer has
a complex conjugate character, and temperature fields
are self�consistent over all of the growth chamber.
Controlling the heat conditions of crystal growth is a
fairly complicated problem, since the nonlinearity of
convective and conjugate heat transfer between the
crystal, melt, and environment requires that we solve
the problem for numerous geometries of calculated
areas during crystal growth.

In global simulations, such problems must be
solved in a fully conjugated formulation, which
requires near�impossible exact specification of the
boundary conditions corresponding to the real process
and a great deal of scarce computational and time
resources. To understand general patterns of the
dependence of temperature fields in crystals on the

intensity of heat transfer from their generatrices and
the corresponding thermal stresses, these problems
can be solved by means of partial simulation. The
results from such investigations are used to estimate
the spatial dependence of the electric properties of a
crystal on its growth conditions and heat prehistory.
Heat transfer from the crystal to the growth chamber
environment affects the temperature fields in the crys�
tal and, in the conjugate heat transfer mode, alters the
curvature of the front and determines the volume dis�
tribution of intrinsic point defects [1, 3] and other
imperfections. Partial simulation, while not claiming
to describe these processes fully, allows us to deter�
mine the main trends in the behavior of investigated
systems upon varying certain control parameters or
groups of parameters. Using the numerical method of
finite differences [4], the authors investigated conju�
gate heat transfer in different modes. The relative role
and interplay of heat conduction, convection, and
radiation at different crystal lengths were studied.

FORMULATION OF THE PROBLEM

Considering the axial symmetry of the thermal
units used for growing single crystals by the Czochral�
ski technique, our calculations were performed in a
two�dimensional (2D) region in cylindrical coordi�
nates. The geometry of the calculated region corre�
sponded to a simplified scheme of the upper part of the
growth chamber consisting of a single crystal, seed
crystal, rod, growth chamber walls, and screen sepa�
rating the melt surface from the gas medium in the
growth chamber. Buoyancy�driven convection was
simulated using a dimensionless system of Navier–
Stokes equations, energy, and discontinuity in the
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Boussinesq approximation, described in vortex, cur�
rent function, and temperature variables

(1)

where T, ω, and ψ are the temperature, vortex, and
current function, respectively, and u and υ are the
radial and axial rate components, respectively.

In our dimensionless equations, Gr = (βg/ν2)ΔT
was the Grashof number. Here, β is the volume expan�
sion coefficient of the gas, g is the gravitational accel�
eration, ν is the kinematic viscosity of argon, ΔT is the
difference between the temperatures of the crystalliza�
tion front and growth chamber walls, and RS is the
crystal’s radius. The Prandtl number of argon is Pr =
ν/a = 0.68, where a = λG/ρCP is thermal diffusivity,
λG is thermal conductivity, ρ is density, and CP is the
specific heat at a constant pressure. The equations are
reduced to dimensionless form using crystal radius RS

as the geometrical scale. The temperature difference

ΔT was taken as our temperature scale. The rate scale

was ν/RS, and the radiation flux scale was /λGΔT.
Radiation fluxes were calculated using the zone

method [5] under the following assumptions: the cal�
culated region is bounded by a closed system of sur�
faces; all of these surfaces are grey, diffusion�radiative
and diffusion�reflective; the surfaces are divided into
the area in which the radiation properties and temper�
ature can be considered constant; and the medium
filling the growth chamber is diathermic. In searching
the thermal stress fields, a quasi�stationary problem of
thermal elasticity was solved using the concept of a
thermoelastic displacement potential [6]. The ther�
moelastic displacement potential can be obtained by
solving the Poisson equation

(2)

where F is the thermoelastic displacement potential,
μ is the Poisson coefficient, and α is the thermal
expansion coefficient. The thermal stress field can be
found from the distribution of the thermoelastic dis�
placement potential using the relation

(3)

Here, σ is thermal stress, E is Young’s modulus, Δ is a
Laplacian, and δij is the Kronecker symbol. The Von
Mises equivalent stress is determined as [6]

(4)

The problem was solved at the following boundary
conditions: The maximum temperature in the system
(1683 K) was specified at the crystallization front:

 The thermal isolation, impermeability, and

adhesion conditions   

were specified on the screen separating the melt surface
from the growth chamber. On the growth chamber walls,
the minimum temperature in the system was maintained
and the impermeability and adhesion conditions were

specified:   and  On the

crystal’s generatrices, the impermeability, adhesion, and
ideal contact conditions were specified with regard to the

radiation fluxes:  

 =  The normal

stress on all crystal surfaces was zero: 

The numerical simulation was performed using the
method of finite differences on a nonuniform mesh of
101 × 501 nods, consisting of triangular finite elements
with specified linear functions. The calculations were
performed for two values of the crystal’s thermal conduc�

tivity: at low thermal conductivity  = 1.51 W m–1 K–1

typical of oxide single crystals and at high thermal

conductivity  = 26 W m–1 K–1 typical of single�crystal
silicon. The crystal’s radius was RS = 0.05 m, the thermal
conductivity of argon was λG = 5.83 × 10–2 W m–1 K–1,
the thermal expansion coefficient of the gas was β =
6.4 × 10–4 K–1, and the kinematic viscosity of the gas
was ν = 2.54 × 10–4 m2 s–1. The properties of argon were
those observed at a temperature of 1600 K [7]. The
emissivity of all the surfaces in the system was 0.5. The
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Poisson coefficient was μ = 0.25, the linear expansion
coefficient of the crystal was α = 5.2 × 10–6 K–1, and
Young’s modulus was E = 1.59 × 1011 Pa.

RESULTS AND DISCUSSION

We performed calculations in the conductive, radi�
ation�conductive, convective, and radiation�convec�
tive modes of heat transfer from the crystal at Grashof
number Gr = 16000, which corresponds to tempera�
ture difference ΔT = 1330 K in the relative crystal
length range of 1 ≤ HS/RS ≤ 8. The temperature fields
in the crystal depended largely on the heat transfer
mode. The temperature field in a compound body was
determined by solving the heat�conduction equation
for all heat transfer modes. When analyzing the rela�
tive role of different heat transfer mechanisms, it is
logical to consider heat conduction over the entire cal�
culated area to be the initial mode. In preliminary
engineering calculations, only the heat�conduction
equations over the entire composite area are often
solved. In this mode, the calculated temperature field
in a solid is naturally taken as a base for comparison
and understanding the effect of convective and radia�
tion heat transfer from the crystal’s generatrices and
the entire crystal–seed–rod compound body.

According to the data calculated in the conductive
mode at high thermal conductivity, the temperature
field in the crystal is strongly nonuniform (Fig. 1).
Consequently, the distribution of radial and axial tem�
perature gradients in different crystal parts is also non�
uniform. This results in nonuniform radial distribu�
tions of the axial local heat fluxes, which is especially
pronounced at the lower heated end (model crystalli�
zation front) and in the upper part of the crystal, where
the region of transition from the crystal to the seed
plays an important role. At the low thermal conductiv�
ity of the crystal, the axial and radial temperature gra�
dients increase sharply at the crystal’s base. This can
be seen clearly in the shape of isotherms and their
crowding near the crystallization front.

In the convective heat transfer mode, the area near
the crystal’s base is cooled more effectively. As a result,
the axial temperature gradients in the lower part of the
crystal grow considerably, due to the descending cold
gas flows formed on the cold growth chamber walls
turning in the lower part of the gas layer and flowing
onto the hot crystal base. The gas is then heated and
flows upward along the crystal generatrix under the
action of buoyancy. Afterwards, the gas flows are
cooled on the growth chamber walls and fall back onto
the crystal’s base. Convective heat transfer thus leads
to a sharp increase in the axial gradients in the hot
parts at the crystal’s base. However, depending on the
calculated area geometry, it can lead to a reduction in
the temperature gradients in colder crystal parts due to
heating by the ascending hot gas flux. Interestingly, the
intensity of the cold gas flux flowing onto the crystal
base depends less on the thermal conductivity of the
crystal (Fig. 2).
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Fig. 2. Radial rate component profiles in cross section r =
1.5 at (a) high and (b) low thermal conductivity of the crys�
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rate profiles at (c) high and (d) low thermal conductivity of
the crystal and length HS/RS = 8 in cross sections (1) z = 1,
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At low thermal conductivity, the spatial shape of
convective flows is retained, but their intensity in the
region above the crystal decreases. This is because a
crystal with higher thermal conductivity removes heat
from the crystallization front much better, and the
upper part of the crystal is consequently heated to
higher temperatures. In addition, the amplitude of the
axial component of the rate in the gap between the
crystal and growth chamber enclosure falls. As the
thermal conductivity of the crystal is reduced, the
temperature difference between the crystallization
front and upper end of the crystal increases. As a
result, the ascending gas flows can effectively heat the
upper part of the crystal when its length is increased.

Allowing for the radiation flows appreciably
changes the temperature distribution over the surface
and inside the crystal in both the conductive and con�
vective heat transfer modes, and the local heat flows on
the crystal’s surface are greatly intensified. The effi�
ciency of cooling increases over the entire crystal vol�
ume, as is indicated by the crowding of isotherms at
the crystal’s base. The temperature on the crystal’s
genetratrices falls. Hence, the difference between the
temperatures of the cold growth chamber walls and the
crystal surface’s is reduced. As a result, the intensity of
convection currents falls somewhat at a specified char�
acteristic ΔT (Gr) value.

As the crystal’s length is increased, the axial tem�
perature gradients at its base change in all modes
(Fig. 3). At high thermal conductivity of the crystal,
the axial gradients grow almost linearly along with the
crystal’s length (Figs. 3a and 3c), while at low thermal
conductivity, the growth of the axial temperature gra�
dient slows as the crystal’s height increases (Fig. 3d).
Starting from a certain length, the axial gradients
change negligibly upon a further increase in the crys�
tal’s height. In addition, it should be noted that the
axial temperature gradients increase notably with a
drop in thermal conductivity (Fig. 3d).

In all modes, the axial temperature gradients exhibit a
nonuniform radial distribution. Their maximum near the
crystallization front lies on the crystal’s generatrices. This
is especially pronounced in the convective heat transfer
mode, when the radial temperature gradients increase
because of the cold gases flowing onto the base in the
lower part of the crystal. With convective heat transfer
and low thermal conductivity, the growth of the axial gra�
dient first slows and then stops as HS/RS rises. In addi�
tion, the axial temperature gradient maximum shifts
from the surface to the center of the crystal as the distance
to the crystallization front grows. This is especially pro�
nounced in crystals with low thermal conductivity, since
a substantial fraction of the heat is transferred via thermal
conductivity from a single crystal to a seed crystal with a
much smaller diameter.

Thermal stresses are also nonuniformly distributed
over the crystal volume. It is interesting that as the
length of the crystal grows, the Von Mises equivalent
stresses at the crystal’s base first increase and then start
to fall (Fig. 4). This is observed most clearly in crystals
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with high thermal conductivity. In addition, thermal
stresses fall somewhat upon a reduction in thermal
conductivity.

The maximum on the curves of the radial distribu�
tion of thermal stresses at the crystallization front lies
on the crystal generatrix and coincides with the max�
ima of the axial and radial temperature gradients. It
can be seen that in the convective heat transfer mode,
the thermal stresses at the crystallization front are
reduced.

CONCLUSIONS

The temperature fields in crystals depend largely
on the mode of heat transfer. Calculations of the tem�
perature fields in crystals in the heat conduction mode
provide an excessively rough approximation. Convec�
tive heat transfer greatly affects the temperature distri�
bution in crystals and leads to efficient cooling of a
crystal’s base. This is because gas flows cooled on cold
growth chamber walls flow onto the hot crystal’s base.
As a result, the axial and radial temperature gradients
at the crystal’s base grow appreciably. Radiation heat
transfer greatly changes the temperature distribution
on the surface and inside the crystal in both the con�
ductive and convective heat transfer modes. Local heat
flows from the crystal’s lateral surface increase dra�
matically. The contribution from convective heat
transfer is also important upon radiation–convection
heat transfer from the crystal’s surface. The radial dis�
tributions of thermal stresses do not qualitatively
change upon variations in the thermal conductivity of
the crystal, but at high thermal conductivity, thermal
stresses at the crystal’s base fall monotonically as the
length of the crystal grows, while at lower thermal con�
ductivity, they depend more weakly on the crystal’s

length and the dependence is reversed; i.e., it first rises
and then falls.
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