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INTRODUCTION

A stationary Schrödinger equation is often used to
solve a two�particle scattering problem in quantum
mechanics. A solution with the real potential of inter�
acting particles is usually sought by expanding the
wave function over partial waves. The normalization of
the wave function that is the solution of this equation
is thus conserved and the S�matrix is unitary. It should
be noted that an analytical solution can be found only
for a small number of potentials and mainly for small
values of the partial moments.

There are several approaches to this problem in
theoretical studies of the scattering of systems with
many�particle structure.

This many�particle problem is often considered
within a two�particle problem by solving the
Schrödinger equation with complex potentials [1, 2].
As a rule, such potentials are introduced phenomeno�
logically. The solution obtained via partial wave
decomposition does not conserve normalization in
this case, leading to uncertainty in estimates of pro�
cesses’ probabilities. The method of a mathematical
eikonal was first proposed in [3, 4], allowing us to
obtain for a Т�matrix an analytical expression in the
form of a functional satisfying the optical theorem and
valid for a wide range of potentials under the condition
that the profile function small. This method success�
fully described the experimental differential cross�sec�
tions for elastic proton�proton scattering in a wide
range of energies, from moderate to ultra�high [5, 6].

In [7], integral equations were obtained for the
three�particle scattering problem using the Lippmann–
Schwinger equation. The unitarity condition was ful�
filled or purely real potentials describing two�particle
interaction, but this was not obvious for complex ones.
In the diagram approach [8, 9], the question of the ful�
filling the unitarity condition remains open as well.

This work summarizes a self�consistent method for
solving the Schrödinger equation for three particles.

The asymptotic solution obtained by this method con�
serves the normalization [10, 11] and allows us to
restore the potentials in a three�particle system.

SCHRÖDINGER EQUATION 
FOR THE PROBLEM OF PARTICLE 

SCATTERING ON A BOUND SYSTEM 
CONSISTING OF TWO PARTICLES

Let us consider the scattering of particle 1 with
mass  and impulse  on a bound system of particles
2 and 3 with masses   and impulses  , respec�
tively. To select the degrees of freedom associated with
the relative movement of particles (2, 3) and the rela�
tive movement of their center of mass and particle 1,
we introduce the Jacobi coordinates

 и 

where  =  is coordinate of the center of

mass of particles (2, 3), while  , and  are Cartesian
coordinates of particles 1, 2, and 3, respectively.

The Schrödinger equation for the scattering of a
particle on a two�particle bound system

(1)

in Jacobi coordinates in the system of the mass center
at Q = 0 is written as

(2)

In Eqs. (1, 2),  are the pair potentials of particles
interaction.  are purely real, while  and  can in
principle be complex. In Eq. (2), we introduce

1m 1k

2,m 3m 2,k 3k

    2 3{ , , }r x y z r r= = −

� � �

    1 23{ , , } ,R X Y Z r R= = −

� �

�

 23R
�

2 2 3 3

2 3

m r m r

m m

+

+

� �

1,r
�

2r
�

3r
�

= > =

⎡ ⎤
− Δ + Ψ⎢ ⎥
⎢ ⎥⎣ ⎦

= Ψ

∑ ∑
� � ��

� � �

 

 

3 3

1 2 3

1 1

1 2 3

( , , )
2

( , , )

i ij
ii i j

V r r r
m

E r r r

⎡ ⎤− Δ − Δ + + +
⎢ ⎥⎣ ⎦

× Ψ = Ψ

�
�

� �� � �� �

� �� �
  

12 13 23( , ) ( , ) ( )
2 2

( , ) ( , ).

rR V R r V R r V r
M m

R r E R r

ijV

23V 12V 13V

A Self�Consistent Description of Particle Scattering 
on a Bound System That Conserves Unitarity

N. F. Golovanova
Moscow State University of Design and Technology, Moscow, 117997 Russia

e�mail: nina4110@yandex.ru

Abstract—A new way of solving the problem of scattering while conserving unitarity for real and complex
interaction potentials is proposed: Finding a self�consistent solution to the many�particle Schrödinger
equation.

DOI: 10.3103/S1062873815040115



BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES. PHYSICS  Vol. 79  No. 7  2015

A SELF�CONSISTENT DESCRIPTION OF PARTICLE SCATTERING 949

reduced mass m =  for particles 2 and 3 and

reduced mass M =  for all three particles.

We select function  in the optical limit [1]

(3)

We assume that function  is valid [10, 11] and
that function (3) retains its normalization.

In Eq. (2), Jacobi coordinates  and  are used as
variables. Division of these variables in it is impossible,
since potentials  and  depend on both Jacobi
coordinates. We assume that at infinitely great dis�

tance ( ), the state of system (2, 3) after scatter�
ing is described by the equation

(4)

where  is the normalized eigenfunction of the
state of system (2, 3), and  is the energy of this sys�
tem’s state. Prior to interaction, function (3) is deter�
mined by a plane wave and normalized function of the
initial state  which is the solution to Eq. (4) for
energy 

Applying the operation of differentiation by argu�

ment  to the multiplication of functions 
in (2) and using (4), we obtain

(5)

in which  =  +  +  is the gradient of

function  in the direction of vector 
If we introduce complex potential

(6)
the real part of which is given by

(7)

and the imaginary part has the form

(8)

Eq. (2) can be written as

(9)

In principle, complex potential (6–8) contains infor�
mation on both the states of the bound two�particle sys�
tem and the states of the entire three�particle system.

FINDING FUNCTION  
AND RESTORING THE FORM 
OF THE OPTICAL POTENTIAL

Let us consider the asymptotic case 

We expand function  in a Maclaurin series
up to third derivatives inclusive, taking into account
the considerations of symmetry

 (10)

In expansion (10), we introduce the notation

 =  and     

 are partial derivatives of the first, second, and
third order, respectively, when 

We also expand potentials  to a Maclaurin
series by the powers of components of vector  and con�
sider in the expansion the first�order terms relative to

:

(11)

(12)

where  and  are values of the real and imag�

inary parts of the potentials, and  and  are
their partial derivatives when 

Inserting expansion (10) into Eq. (9) and equating
imaginary and real parts of the expressions on the right
and left sides, we obtain a system of two differential

equations with respect to    

, and :
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(13)

(14)

Since asymptotic wave function (3) included plane

wave  before interaction, it is natural to assume that

(15)
It then follows from Eq. (14) that

(16)

To determine the partial derivatives  

 , and , we equate the zero�degree
terms with Jacobi coordinates in (14). As a result, we
obtain relation

(17)

which determines  from which it follows that

 must be negative in order for  to be a real
function.

Coefficient  is found from (13)

(18)

Given the condition of normalization, we may assume
that

(19)

From Eq. (14), we then obtain

(20)

As derivatives of higher order,  and  can be
found by setting a specific form of function  that
is a solution to Eq. (4) and considering the higher
degree coordinates of vector  in expansion (10).

CONCLUSIONS

It was shown that function  contained in the
exponent of wave function (3), which is the solution to
Eq. (9), can be obtained with the required number of
members in Maclaurin expansion (10). The conver�

gence of this expansion for each  will suffice when

 since each successive term contains a coef�

ficient at the  degree of the order of first

degrees of two�particle potentials  and  rather
than their positive powers, as in perturbation theory. In
addition, nuclear physics uses potentials that are
decreasing exponents. To determine the coefficients in
expansion (10) along with overridden two�particle
potentials (11, 12), we used information on two�parti�

cle interaction potentials  and , and about
the function of the two�particle system on which scat�
tering occurs.
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