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INTRODUCTION

Advances in semiconductor technologies have
allowed the growth of new structures that have unique
properties and attract special attention from both the�
orists and experimenters. In addition to the familiar
carbon nanotubes (CNTs) [1–3], which have both
semiconducting and metallic properties and are typi�
cal example of one�dimensional structures, so�called
whiskers have also gained popularity [4–6]. The latter
can exhibit either semiconducting or metallic proper�
ties, depending on their material and method of fabri�
cation. Numerous papers have been devoted to theo�
retically describing such structures, and considerable
progress has been made in understanding not only
their properties but the optical properties of low�
dimensional materials as well. Note that the greatest
development in studying optical properties has been in
plasmonics, which focuses on the spectral features of
low�dimensional systems [7]. Despite the results
already achieved, studies of the interaction between
electromagnetic fields and low�dimensional structures
has mainly been limited to linear analysis, in which a
field is considered to be weak. Truly nonlinear effects
have been considered only in a few cases, either
numerically or using the theory of perturbations.
Some progress has nevertheless been made in studying
the interaction between extremely short optical pulses
and carbon nanotubes [8–11], for which the self�con�
sistent problem of limiting pulse propagation in car�
bon nanotubes has been resolved. Here, the pulse
propagated perpendicular to the nanotube axis, and
the electric field was homogeneous through the nano�
tube. Note that the physically attractive situation in
which the field propagates inhomogeneously along the
nanotube axis has yet to be considered. The main dif�
ference between this situation and the ones above is
that the current is also inhomogeneous, due to the
field’s inhomogeneity along the axis, and there is
charging that induces a complementary field. We
should therefore study the behavior of extremely short

optical pulses in quasi�one�dimensional semicon�
ducting structures when the pulse propagates along the
structure’s axis.

BASIC EQUATIONS

A nano�object’s electron structure is normally
studied within the strong�coupling approximation.
The dispersion law describing the properties of (m, 0)
CNTs has the form [12]

(1)

where s = 1,2…m, γ ≈ 2.7 eV,  and b = 0.142 nm
is the distance between neighboring carbon atoms.

To construct a model of ultrashort optical pulse
propagation in a quasi�one�dimensional structure
using the geometry in Fig. 1, we describe the elec�
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Fig. 1. Geometry of a problem where j(x, t) is the current
along a CNT axis and E(x, t) is the electric field of the
pulse.
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tromagnetic field of a pulse using Maxwell’s equa�
tion [13],

(2)

The vector potential determines the field of the
extremely short pulse and has the form

The vector potential’s behavior is therefore
described by Maxwell’s equation

(3)

where j is the current resulting from the effect the
pulse’s electric field has on the electrons over the min�
imum conductive band of our structure. The speed of
light is then considered to be 1. Here, we ignore dif�
fraction laser beam spreading in directions perpendic�
ular to the axis of propagation. The electric field per�
pendicular to the structure’s axis is also not consid�
ered, since it does not contribute to the electron
motion. In this model, its use does not allow interband
transitions; otherwise, the laser pulse’s far�IR fre�
quency would be limited. Inasmuch as the typical size
of the one�dimensional structures and the distance
between them is much less than the typical size of the
spatial area in which an extremely short pulse is found,
we can use a continuum approximation and consider
the current to be distributed over the volume.

Since we may assume that the characteristic relax�
ation time for electrons in semiconductors is 3 × 10–13 s
[14], the ensemble of electrons at the times typical of
extremely short optical pulses (on the order of 10–14 s)
can therefore be described using the collisionless Bolt�
zmann kinetic equation [15]

(4)

where  is a coordinate�implicit distribu�
tion function, and the f distribution function at the ini�
tial time is close to Fermi’s equilibrium distribution
function F0:

where T is temperature and kB is the Boltzmann con�
stant. Here, we need to make one more approxima�
tion, in which the electric field typically created by an
extremely short pulse considerably exceeds the one
generated by the redistribution of charge in the one�
dimensional structure. The change in the electron dis�
tribution function resulting from the pulses is thus
greater than the one over the coordinates.
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The following expression is valid for current density
:

(5)

where we introduce group velocity 

Solving Eq. (4) via the standard method in [16], we
obtain

(6)

Integration in (6) is performed over the first Brillouin

zone, and 

Equation (3) with allowance for (6) must be sup�
plemented with a scalar ϕ�potential equation. The
field inhomogeneity along the Ox axis redistributes the
electric charge density. Inasmuch as the total charge
over the sample volume is constant, the variation in
charge density is determined by the continuity equa�
tion [13]

(7)

where ρ is the bulk charge density. Equation (7)
enables us to establish the relation between the current
and the scalar potential, keeping in mind that the sca�
lar potential is determined by the Laplace equation

(8)

where ρ0 is the equilibrium charge density and

 Introducing the dimensionless factor, we

finally obtain the system of Eqs. (9), (11), and (12):

(9)

where  is the projection of dimensionless
vector potential onto the Ox axis; 

 is the dimensionless time;  is a
dimensionless coordinate;  ρ0 is the equilib�
rium electron concentration when there is no electro�
magnetic field; and ω0 is the frequency–length magni�
tude determined by the formula
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The equation determining the variation in electron
concentration in the pulse’s electromagnetic field has
the form

(11)

The variation in scalar potential is determined by the
expression

(12)

The electric field in the nanotube bundle has the form
E{E, 0, 0}

(13)

where E0 is determined by the formula

(14)

As is well known, the physical magnitude measured
experimentally is the intensity of electromagnetic irra�
diation and is proportional to the squared module of
the electric field vector [17]. The magnitude propor�

tional to field intensity  and governed by for�
mula (13) is thus defined as

(15)
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RESULTS FROM NUMERICAL MODELING

The system of Eqs. (9), (11), and (12) have no gen�
erally exact analytical solution, so the propagation of
electromagnetic pulses in a one�dimensional structure
was studied by means of numerical modeling:

We assume that a breather�like electromagnetic
pulse is generated in a CNT at moment τ = 0, and the
nonzero component of the dimensionless vector field
potential has the form

(16)

where ξ0 denotes the dimensionless pulse coordinates
along the Ox axis at moment τ = 0, and λ is the dimen�
sionless pulse half�width along the Ox axis.

We also assume that at moment τ = 0, the electron
concentration n in the CNT is n0, and that scalar
potential Φ is zero; i.e., we have the initial conditions

 and 
Laser pulse propagation in an array of (m, 0) car�

bon nanotubes was studied with the following param�
eters: m = 7, γ0 = 2.7 eV, b = 1.42 × 10–8 cm, n0 = 2 ×
1018 cm–3 [14], T = 77 K, ε = 4, and ω0 ≈ 1014 s–1

(see (7)).
The evolution of an extremely short pulse is shown

in Fig. 2.
The main result is that the pulse can propagate

along the CNT while maintaining its shape. This is
explained mathematically by our effective equation
being close to the sin�Gordon equation, which allows
for solitons. Physically, it is due to the balanced disper�
sion and nonlinearity in our effective solutions.

The shape of a pulse of an electromagnetic field as
a function of the initial pulse amplitude is shown in
Fig. 3.
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Fig. 2. Time dependences of electric field intensity ψ for
different points in space: (a) x = 0.5 × 10–5 m; (b) x = 2.0 ×

10–5 m; (c) x = 3.0 × 10–5 m (Q = 0.2).
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Fig. 3. Time dependence of electric field intensity ψ for
different values of the initial pulse amplitude (x = 2.0 ×
10–5 m): (a) Q = 0.2; (b) Q = 1.0.
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CONCLUSIONS

The obtained dependences confirm that the stabil�
ity of a pulse’s shape is due to the nonlinear response
of a CNT to an applied electric field. Note that the sta�
ble shape of a pulse varies with its amplitude, which is
also associated with the nonlinearity of the response.

Extremely short optical pulses can thus propagate
along carbon nanotubes. This in turn provides new
opportunities for studying the nonlinear characteris�
tics of both pure CNTs and CNTs with impurities.
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