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INTRODUCTION

Studying the complex nonstationary behavior of
intense electron beams with virtual cathodes (VCs) is
an important problem of modern radiophysics and
electronics. The study of systems with VC is of funda�
mental interest, as they can exhibit a variety of chaotic
behavior, turbulence, and the formation of dissipative
electron structures [1, 2]. Their importance for use as
promising generators of powerful microwave radiation
on the basis of VC (vircators) is also apparent [3, 4].
There have been numerous studies on the acceleration
of charged particles using an oscillating VC [4] and
creating sources of broadband noise�like radiation
with different power levels [5].

The aim of this work was to conduct a numerical
study of the nonstationary nonlinear processes of the
formation and interaction between coherent electron
structures in a low�voltage electron�wave system with
a virtual cathode. Note that similar systems with VCs
in bremsstrahlung electron flows can be of consider�
able interest as sources of noise�like broadband cha�
otic signals with average power levels in the microwave
range [5, 6]. Their theoretical and experimental study
is therefore important for practical application.

INVESTIGATED SYSTEM 
AND MATHEMATICAL MODEL

The nonstationary behavior of an electron flow
with a virtual cathode was studied using the example of
a low�frequency electron�wave system with a source of
electrons in the form of a magnetron injector gun
(MIG). The electron beam formed by a MIG has high
levels of perveance and intrinsic noise that, as was
shown by earlier studies, makes it an effective source of
electrons for low�voltage systems with virtual cathodes
[6–8].

Let us recall that the main elements of a MIG are
[9] a cathode and accelerating electrode, executed in
the form of coaxial cone�shaped electrodes inserted
into one another. The cathode has an emitting belt that
encircles the cathode around its axis. Due to the
crossed steady�state electric and magnetic fields in the
region of the cathode, the MIG forms a tubular helical
electron flow. The VC in such a system is formed by
introducing additional bremsstrahlung of the beam
that facilitates an increase in the perveance of the
beam.

Our model of the investigated system was a
2.5�dimensional self�consistent system of equations
for the motion of charged particles and Poisson equa�
tions (the model was described in detail in [8, 10]).
The motion of the particles of the flow was simulated
using the method of large particles (PIC), i.e., the
Poisson equation in combination with the standard
nearest neighbor method (the five�point difference
scheme). The system had two main governing param�
eters: α, the dimensionless current of the beam, and
Δϕ, the breamsstrahlung potential difference deter�
mined by the potential difference. The steady�state
magnetic field was arrived at analytically and had the
configuration of a magnetic trap. The system was thus
described in the quasi–steady state approximation in
dimensionless parameters, allowing us to extrapolate
the results from simulations to cases of nonrelativistic
to weakly relativistic systems with helical beams.

The orthogonal decomposition of space�time data
using the Karhunen–Loève (KL) expansion [11–13]
was used to describe the physical processes that occur
in an electron beam with a VC. In using this method to
analyze the complex behavior of a VC in a beam of
charged particles, we encounter separate space�time
structures in the electron flow that have characteristic
spatial distributions and time scales in the electron
beam whose interaction generally allows us to explain
the features of the behavior of a beam with a VC.
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Orthogonal decomposition is performed by solving
an integral Fredholm equation of the second kind in
the form

(1)

where K(z, z*) is the kernel of the equation
(2)

where  denotes averaging over time. As function
ξ(z, t), we can select the space�time distribution of any
physical quantity preliminarily reduced to zero aver�
age, on the basis of which we propose to analyze the
behavior of the system. In this work, we analyze the
space�time distribution of the spatial charge density of
a beam, ρ(z, t), averaged over the radius of a flow. The
solution to initial integral equation (1) with kernel (2)
formed on the basis of the space�time distribution of
spatial charge density ρ(z, t) is reduced to finding a set
of eigen numbers λn and eigenvectors Ψn that deter�
mine the nth KL mode of the oscillatory process. The
value of λn is proportional to the energy of the corre�
sponding mode, which is conveniently considered in
normalized form:

(3)

The temporal behavior of separate KL modes can
be restored as

(4)

We then use Karhunen–Loève orthogonal decom�
position to analyze the nonlinear behavior of a helical
beam in the squeezed state.

RESULTS AND DISCUSSION

Let us discuss the results from modeling such a sys�
tem. It was shown in [7, 8] that in the proposed geom�
etry, a reflective VC (at low values of the bremsstrahl�
ung potential difference Δϕ) or the so�called squeezed
state of a beam (SSB) [14�16] that is a VC distributed
over space and characterized by high density and low
kinetic energy of the electron flow [14], can be created
in the system at selected values of the governing
parameters. In the mode of SSB formation, complex
near�chaotic behavior of the flow particles is observed
in the beam.

Earlier studies [8] showed that low�frequency fluc�
tuations of the potential of the drift space are visible in
the squeezed state in the beam of particles. In this
mode of charge fluctuations, no spatially localized
bunches of electrons appear in the beam. The emer�
gence of potential fluctuations in the system is due to
the perturbations in charge density that appear in the
beam acting as waves of the spatial charge.

KL analysis showed that the emergence of the
squeezed state of the beam corresponds to the exci�
tation of several interacting KL modes in the flow.
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Figure 1 shows the time implementations A1(t) of the
first KL modes (the modes with the maximum energy
of the fluctuations) and their power spectra for two dif�
ferent states of the beam: reflective VC (Fig. 1a) and
SSB (Fig. 1b). Figure 1a shows that the time depen�
dence of the fluctuations of the first KL mode for a
beam with a reflective VC has relatively low amplitude,
and its spectrum is extremely noisy. Analysis of the KL
modes showed that in mode of the formation of a
reflective VC in the beam, the energy of fluctuations is
uniformly distributed over all modes. Figure 2 shows
the dependence of KL mode energy Wi on mode num�
ber i (for the first six modes). Curve 1 corresponds to
the formation of a reflective VC in the flow; curve 2, to
the squeezed state of the beam. It can be seen that the
energy of the first (main) mode for the beam with the
reflective VC (curve 1 in Fig. 2) does not exceed 1%,
and the energies of the other modes are lower.
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Fig. 1. Time implementations A1(t) (top) and power spec�
tra of the fluctuations (bottom) of the first KL modes:
(a) in the system with VC; (b) in the system with SSB.
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Another pattern is observed for KL modes in the
beam in the squeezed state. It can be seen from Fig. 1b
that the first KL mode has near�periodic high�ampli�
tude fluctuations. There is one prominent harmonic in
the noise background of the power spectrum (Fig. 1a,
on the right). This harmonic corresponds to the main
frequency of the fluctuations in the potential of the
spatial charge in the drift space of the system. The sec�
ond and subsequent KL modes have lower amplitudes
and different space�time behaviors. Figure 2 shows
that the energy of the main KL modes for the beam in
the squeezed state (curve 2) is approximately 10%. The
second mode provides approximately 3% of the total
energy of the fluctuations. The level of the noise ped�
estal in this case rises and new harmonics appear in the
spectrum of the signal. The energy of the subsequent
modes falls, and their behavior is much noisier. When
SSB is implemented in the beam, the behavior of the
flow is thus completely determined by the two first KL
modes, which describe the form of the electron struc�
tures in the beam: waves of the spatial charge. The
other modes create the low�noise background for the
fluctuations of the main structures.

Figure 3 shows the distribution of the two first KL

modes in the space of eigenvectors  and 
for a beam in the squeezed state. It can be seen that
substantial differences between the eigenvectors are
observed only at the onset of the drift space; in the rest
of the drift space region, the distributions of the modes
are similar to one another. We may conclude that the
fluctuations of the modes in this region of the system’s
drift space determine the perturbations in the charge
density of the beam. Appearing in the right�hand third
of the system, these perturbations in the charge density

( )1 zΨ
�

( )2 zΨ
�

then propagate along the space at the speed of the
waves of the spatial charge. These perturbations are
described by the distribution of KL modes in the space
(Fig. 3). The fluctuations of these modes determine
the spectral composition of the fluctuations in the
potential of the drift space in the region of the beam.

CONCLUSIONS

Results from numerical simulations of the nonsta�
tionary nonlinear behavior of a helical electron flow in
an electron–wave system with a virtual cathode were
presented.

Analysis of the behavior of the beam using the Kar�
hunen–Loève expansion showed that the behavior of
the flow is completely determined by that of the first
two KL modes in which the main fraction of the
energy of the fluctuations of the beam charge is con�
centrated, depending on the values of the controlling
parameters.
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