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Abstract—Autonomous driving research has progressed significantly in recent years. In order to travel
safely, comfortably, and effectively, an autonomous car must completely comprehend the driving sce-
nario at all times. The key criteria for a comprehensive understanding of the driving situations are
proper perception and localization. The research on perception and localization of autonomous cars
has increased substantially as a result of recent breakthroughs in AI, such as the wide range of deep
learning approaches. However, owing to environmental uncertainties, sensor noise, and the complex
interaction between the parts of the driving environment, additional study is required to achieve totally
trustworthy perception and localization systems. In this survey, we demonstrate the advanced percep-
tion and localization processes in the field of autonomous driving. We show how cutting-edge
approaches and practices have brought today’s autonomous cars closer than ever to completely com-
prehending the driving environment.
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1. INTRODUCTION
Technology developments, particularly incredible improvements in computing technologies, artificial

intelligence, and hardware capabilities, have allowed us to broaden our horizons in terms of what we can
create or enhance. As a result, one application that was once thought to be a dream, autonomous driving,
now appears to be on the verge of becoming a reality. Being able to travel quickly, safely, and comfortably
under various types of situations and weather conditions using driver-less cars has become a main research
subject in recent years due to the anticipated benefits, such as ease of use, reduced number of accidents
and traffic jams, and more efficient energy management [1].

In general, each autonomous driving system comprises three main stages (Fig. 1). The first one is the
perception and localization stage that derives values that describe the driving situation so that the auton-
omous vehicle understands the surrounding environment. In this stage, data from different sensors and
digital maps are combined, processed, and then the driving situation is interpreted. The second and third
stages are responsible for decision making. The second stage is motion planning, which involves deciding
on a reference trajectory that represents a driving behavior and sending it to the trajectory controller. The
third stage is the trajectory controller, which seeks to keep as close as possible to the reference trajectory
chosen by the previous stage while taking into account comfort, safety, and efficiency criteria. Accelera-
tion and steering commands are computed by the trajectory controller and sent to the actuators [2].

This paper provides a survey of the advanced methods for perception and localization of autonomous
driving:

• Sensors used for autonomous driving.
• Current trends in the research of perception and related methodologies.
• State-of-the-art methods used for localization.
In Section 2 we list the sensors and other sources used for autonomous driving research. In Section 3,

perception of autonomous driving is discussed in detail with focus on object detection and semantic seg-
123
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Fig. 1. Autonomous driving system general architecture (adopted from [2]).
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mentation. In Section 4 we discuss localization and current research on simultaneous localization and
mapping. Finally, we conclude.

2. SENSORS AND OTHER RESOURCES USED FOR AUTONOMOUS DRIVING
A summary of the various types of sensor that are used in modern autonomous driving research is

shown in Table 1.
Each sort of sensor is utilized in a different circumstance than the others or in combination with others

to execute a task as efficiently as possible. In the context of autonomous driving, cameras are critical. On
the ego vehicle, one or more cameras are mounted to take images of the surrounding environment, which
are subsequently forwarded to the perception system, which is in charge of situation interpretation. As a
result, researchers employ a variety of cameras to ensure that their self-driving cars can visually compre-
hend their surroundings. A stereo camera is a camera that has two or more lenses, each with its own image
sensor. It is used to take 3D pictures of the surrounding area. Because 3D recognition is critical for auton-
omous driving, a growing number of academics are working to make the ego car perceive its environment
in 3D using this technology.

However, sensors such as cameras have a lot of difficulty capturing excellent images at night and in
adverse weather situations such as rain, fog, and snow. The employment of a radar can ensure that the sur-
rounding environment is monitored at all times. Radars send out pulses of radio waves and measure the
locations and speeds of nearby objects based on the reflections. LiDARs transmit laser pulses rather than
radio pulses. LiDAR sensors generate a detailed 3D map from reflected signals by firing invisible lasers.
These signals produce “point clouds”, which depict the vehicle’s surroundings. In the dark, LiDARs can
do significantly better than cameras. Ultrasonic sensors, on the other hand, emit ultrasonic pulses that are
reflected by the surrounding objects. After that, the echo signals are received and analyzed. They are
mostly used in tasks that need very short-range perception such as parking.

An inertial measurement unit (IMU) is an electronic device that uses a combination of accelerometers,
gyroscopes, and magnetometers to detect a vehicle’s specific force, angular rate, and orientation. Recent
advancements have made it possible to manufacture IMU-enabled GPS devices that can be used in
autonomous cars in combination with other types of sensor (such as wheel odometry, LiDAR, and cam-
era) to measure the ego vehicle’s position and estimate its dynamic velocity.

The main usage conditions of various types of sensor are summarized in Table 2.

3. PERCEPTION IN AUTONOMOUS DRIVING
The accuracy and efficiency of nearly all perception tasks have increased as a result of recent research

breakthroughs, particularly those linked to machine learning.

3.1. Detection, Classification, and Recognition
Object detection is critical for autonomous driving in general. Deep learning technologies [17] such as

convolutional neural networks (CNNs) are increasingly used in modern research to produce cutting-edge
findings [18, 19]. CNNs are increasingly being deployed in object detection applications when combined
with other deep learning techniques such as autoencoders, recurrent neural networks (RNNs), and Long
Short-Term Memory network (LSTM). For autonomous driving perception, 3D object detection is very
important. 3D scene information can be acquired via stereo imaging. A CNN is supplied with context and
depth information and produces the 3D bounding boxes coordinates and poses of the detected objects
using the acquired high-quality 3D object proposals. The input of the CNN consists of a variety of pro-
posals, including object size priors, object location on the ground plane, and numerous depth character-
istics that reflect free space, point cloud densities, and ground distance [20]. Object detection for auton-
omous driving is increasingly using hybrid deep learning architectures. A hybrid of CNN and RNN archi-
tecture can be used to create a model that understands the 3D traffic scene in general, rather than just
OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 31  No. 2  2022
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Table 1. A summary of sensor usage in autonomous driving research
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[3] Two SICK LiDARs and one IBEO LiDAR are mounted on the vehicle’s front 
bumper guard, and three SICK LiDARs are mounted on the custom-made roof 
rack. Three cameras are mounted behind the vehicle’s windscreen. Bumps and 
pedestrian crossings in front of the car are detected by two cameras. To recog-
nise lanes, a single colour camera is utilised

[4] There are eight laser scanners and seven cameras. Three SICK-LMS291 single-
line scanners and two analogue cameras with a frame rate of 25 frames/s and an 
image resolution of 640480 pixels were utilised for road detection from these

[5] To characterise the surroundings around the vehicle, one Velodyne HDL-64E 
S2 laser was used. To receive GPS data and measure velocity, acceleration, and 
rotation angles, an Applonix POS LV 220 linked GNSS/IMU is used. For 
image processing and computer vision applications, a camera system is used. 
The vehicle’s body is covered in 12 omnidirectional radars that monitor distant 
regions over a 180 m range

[6] For placement optimization, two 16-channel LiDARs (Velodyne VLP-16) were 
utilised, and one 32-channel LiDAR (Velodyne HDL-32E) was used for com-
parison

[7] Hall Effect sensors have been installed on each wheel of the vehicle to enable 
basic off line localization inside a low-level system. The IMU utilised is an 
Xsens MTi-G-710 with a global navigation satellite system (GNSS) running at 
50 Hz. LiDARS (two) (SICK LMS111-1010 and ibeo LUX 4). To conduct 
visual navigation tasks, a pair of FLIR Blackfly GigE cameras are placed on the 
vehicle’s frame

[8] A Velodyne HDL-32E is utilised, as well as a GPS/IMU suite

 [9] A variety of onboard sensors, including wheel-speed sensors, a steering-wheel-
angle sensor, and a yaw-rate sensor. To identify distant objects, two multilayer 
laser scanners (Ibeo LUX) are placed on the front bumper. Four single-layer 
laser scanners (LMS 151) are mounted on each corner of the ego vehicle to 
identify nearby objects. To identify obstacles, two single-layer laser scanners 
(LMS 291) have been placed on the roof. On the interior of the windshield, one 
colour camera and three monocameras are placed to identify and categorise 
mission objects. A Real-Time Kinematics GPS (RTK-GPS) and a Differential 
GPS receiver are both utilised (DGPS). The vehicle’s dynamic motion is esti-
mated using IMU

[10] To detect the car’s dynamic motion, the ESC system uses various types of vehi-
cle motion sensors (a steering angle sensor, wheel speed sensors, and a yaw rate 
sensor). For initialization and GPS measurement updates, positioning data 
from a low-cost GPS (Ublox EVK-6T) was used. Three types of cameras were 
installed in the test vehicle: a front camera, a rear camera, and an AVM system

[11] A Camera to capture front images, a MEM gyroscope for yaw-rate measure-
ment, a GNSS receiver for initial position estimation. Odometer and IMU are 
used for mapping

[12] To compare three sensor plans, all sorts of sensors are employed
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certain elements of it, and makes driving strategy recommendations based on multimodal data [21]. Here,
a CNN is employed with an LSTM (Fig. 2). In terms of general object detection, feature fusion, and low-
level semantic understanding, the proposed model is said to outperform the current state-of-the-art.

It might be difficult to interpret and comprehend collected data in particular traffic scenarios. Some
academics have developed a framework to address these traffic-related issues [22]. The framework can
identify and distinguish items in a driving scenario, as well as anticipate the intentions of pedestrians in
that scene. They employed YOLOv4 [23] to recognize ten different item types. They also used Part Affin-
ity Fields [24] to determine the pedestrians' poses. They leverage Explainable Artificial Intelligence (XAI)
technology [25] to explain and help with the outcomes of the risk assessment task. Finally, they built an
end-to-end system that allowed them to combine multiple models with the greatest precision. [26] intro-
duced YOLOv4-5D, a deep learning-based one-stage object detector (no region proposal stage required)
geared for autonomous driving. Their model is a modified version of YOLOv4. It has an accuracy compa-
rable to those highly accurate, two-stage models [27, 28], while also has the ability to run in real-time. The
backbone and feature fusion phases of YOLOv4 are modified in YOLOv4-5D to meet the precision and
real-time demands. Even for greater image resolutions, the suggested technique now runs properly and in
[13] There is a millimeter-wave radar, a GPS system, a video surveillance system, 
and a vehicle gyro

[14] At the front of the car, a stereo camera and a four-layer LiDAR are fitted. An 
RTK-DGPS receiver is used to locate the car used in the testing

[15] Multiple cameras, a 360 deg 64-beam high-definition LiDAR (Velodyne 
HDL64e), millimeter-wave radars, and an Applanix POS LV 220
(fused GPS + IMU positioning)

[16] To estimate the vehicle’s pose, a NovAtel virtual reference station-aided GPS is 
mounted on the roof. The GPS is used in conjunction with the IMar IMU to 
improve real-time kinematic performance. To detect and track nearby cars, a 77 GHz 
long- and midrange Delphi multimode ESR radar, two multilayered LD-MRS 
LiDARs connected to the front edge, two two-dimensional (2D) SICK LMS 
LiDARs attached to the rear edge, and a 3D Velodyne HDL-64 LiDAR 
mounted to the roof are utilised. Traffic signals are detected using a vision sen-
sor (camera) mounted in the middle of the windshield.
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Fig. 2. The overall system architecture in [21].
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Table 2. A summary of sensor usage in autonomous driving research

Sensor Usage Best for Not for

Camera Object detection (cars, road 
signs, traffic signs, etc.) [3, 9, 
10, 15, 16], semantic segmen-
tation [4, 7], visual odometry 
[7], localization (positioning) 
[7, 10, 11]

Perception in normal weather 
conditions in daytimes. Can 
be used to detect detailed and 
small objects. Can be used to 
detect colors. Best for object 
detection

Adverse weather conditions or 
nighttimes

LiDAR Object and obstacle detection 
[3, 7, 9, 15, 16], semantic seg-
mentation [4, 8], localization 
[7, 10]

Perception and localization in 
Normal weather conditions at 
all times. Usually combined 
with other sensors

Adverse weather conditions
Color detection
Long range
Low price requirements

Radar Scanning of distant areas [5], 
perception [15], object detec-
tion [16]

Perception in all weather con-
ditions and at all times.
Cheap choice

Detailed and small object 
detection

Ultrasonic Low speed parking [12] Perception in very short range 
(mainly used for parking).
Cheap choice

Medium and long ranges

IMU/GPS/GNSS Localization [5, 7, 9–11, 14], 
vehicle dynamic motion [9], 
vehicle pose [16]

Localization High accurate localization 
(needs to be combined with 
other types of sensor such as 
LiDAR and camera)Odometry Linear and rotational veloci-

ties [7], wheel speed and yaw 
rate [9, 10]
real-time thanks to the changes. For instance, the feature fusion module of the new model is able to han-
dle five scales of detection, and the proposed network pruning method based on sparse scaling factor
reduces the redundant convolutional channels, leading the complexity of the model to drop significantly.
In order to determine the location and orientation of objects, costly components such as 3D LiDARs and
stereo vision are frequently employed. Recent works, such as [29], proposed a less expensive method for
object recognition that relies only on images from a single RGB camera. The depth information acquired
from contact points of the respective objects and the ground plane is used to estimate the 3D position of
obstacles on the road. Deep neural network approaches for monocular 3D object detection and monoc-
ular depth prediction leverage the calculated positions.

When there is a large object scale variation, CNNs usually struggle. To overcome this problem, some
study suggests that deconvolutional and fusion layers be added to retrieve context and depth information.
Furthermore, some difficulties, such as object occlusion and poor lighting, can be overcome by employing
non-maximal suppression (NMS), which can be applied across object proposals at several feature sizes
[30]. In order to conduct both single-class and multi-class classification on imbalanced categories,
researchers recommended employing a multi-level cost function (Fig. 3). A deep data integration tech-
nique can also be utilized for hard or rare samples [31]. The atrous spatial pyramid pooling (ASPP) [32, 33]
was used by some researchers to solve the problem of poor performance of object detection systems when
there are small objects, low illumination, or blurred outline in the received camera images. This approach
extracts features from multiple scales so that object detection accuracy is higher with the same number of
parameters [34]. CNNs can further be used for a variety of different applications, including pedestrian
movement detection with pedestrian movement direction recognition [35].

Lane detection and recognition, as well as the detection and recognition of road surface markings, are
essential tasks for autonomous driving. They should be performed in real-time while taking into account
the various angles and sizes of the discovered objects. Unsupervised learning techniques based on a live
feed from a camera mounted on the dashboard of a moving car are proposed to satisfy these constraints.
A spatio-temporal incremental clustering algorithm is used with curve-fitting to detect lanes and road sur-
face markings at the same time. This method of learning is appropriate for a variety of object kinds and
OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 31  No. 2  2022
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Fig. 3. Proposed network architecture in [31].
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scales [36]. Others [19] created a hybrid approach that integrates CNN and RNN principles and is said to
outperform previous approaches in lane detection, particularly in difficult scenarios.

As illustrated in Fig. 4, the proposed technique extracts information from many image frames (instead
of using a single frame as most previous research used to do) using a fully-connected CNN that produces
low-dimension feature maps, and then feeds the derived features from the successive frames to an RNN
(An (LSTM) model is used), and finally, the resulted features are fed into another CNN that is used for
lane prediction. This way, if a frame is unable to give sufficient information for lanes to be accurately
detected, for example owing to heavy shadows or severe road mark degradation, the information gathered
from prior frames may be applied to estimate lane information. Deep learning was also applied for lane
detection and fitting in more recent works such as [37]. However, as long as learning relies on input data,
the data should be diverse enough to allow for the appearance of target objects in a variety of sizes and
shapes.

Other detection issues, such as curb detection, require further investigation. Curb detection is a chal-
lenging task, especially at intersections where the curbs become fragmented, and the computational cost
of the detection is significant, making it difficult to perform in real-time. A technique for detecting curb
areas has been proposed in [38]. The point cloud data that describes the driving scene is initially collected
using a 3D LiDAR sensor. The point cloud data is then analyzed to distinguish between on-road and off-
road regions. Following that, a sliding beam [39] method is applied to choose the road area using off-road
data. Finally, a curb detection algorithm is used to pick curb locations based on the chosen road area.
Instead of performing online curb detection by taking advantage of video cameras or 3D LiDARs that may
yield erroneous information in poor lighting or bad weather, [40] developed an offline curb detection
approach that employs aerial images to fulfil these tasks. Their approach is built on cutting-edge learning
techniques including deep learning and imitation learning.

The ability to interpret a situation can be improved by combining vision and LiDAR data. To identify
the drivable area more accurately, several researchers proposed combining data fusion with an optimal
selection approach [4].

Then, depending on the automated classification of the optimum drivable area, lane detection is
achieved selectively (Fig. 5). It is stated that the suggested system is effective and dependable in both struc-
tured and unstructured traffic situations, and that no human switching is required. A higher level of data
fusion is suggested this time among vision, LiDAR, and radar data to conduct perception in all-weather
situations, including hard illumination conditions like dim light or total darkness. The fused data is uni-
formly aligned and projected onto the image plane, and the output is fed into a probabilistic driving model
for motion planning model (Fig. 6). The proposed approach is said to operate well in high-traffic areas
and in adverse weather conditions [41]. In [42] the Multi-Sensor Fusion Perception technique (MSFP) is
proposed. MSFP is based on AVOD [43], a 3D object proposal system that fuses multimodal information
derived from the aggregation of RGB and point cloud data. To produce respected features, the MSFP
architecture first analyses camera and LiDAR data. The characteristics are then fed into an introduced
Region Proposal Network (RPN), which creates 3D region proposals.
OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 31  No. 2  2022
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Fig. 4. Architecture of the proposed network in [19].
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Despite the fact that images from video streams include a wealth of spatial and temporal information
on object poses and scales, 3D multi-object tracking (MOT) in complicated driving settings with signifi-
cant occlusions among numerous tracked objects is difficult. To address this issue, a variety of approaches
have been developed. Some of these solutions [44, 45] assume that all of the frames (past, current, and
future ones) are accessible and process all of them to generate object tracking information (global track-
ing). Those methods are accurate, but they don’t meet real-time requirements. Other techniques [46, 47]
solely incorporate information from current and previous frames, with no knowledge of future frames
OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 31  No. 2  2022
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Fig. 6. The architecture of our probabilistic motion planning network (PMP-net) in [41].
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(online tracking). Real-time tracking is possible using online tracking methods. However, further effort is
required to provide very precise tracking in real-time. For 3D MOT, [48] presented a real-time online
technique.

They employed deep learning to jointly perform both object tracking and detection by taking into
account the spatial-temporal characteristics of the driving scene, resulting in a more accurate MOT than
traditional detection approaches that rely on bounding boxes and association algorithms [49, 50]. The
driving behavior awareness is derived from learned object characteristics adopting Deep Layer Aggrega-
tion (DLA) [51] as the network backbone and considering 2D center point, depth, rotation, and transla-
tion in parallel.

Road sign recognition is a crucial element of the perception of autonomous driving systems. It enables
the ego car to gain a comprehensive understanding of the driving environment and situations. Many recent
studies have presented effective ways to deal with difficulties connected to road sign recognition as a result
of the rapid development of deep learning techniques related to object detection. A CNN design was
developed by several academics to detect speed limit road signs, which are among the most challenging
things to recognize in the US traffic sign set. They claim that their method improved the area under the
precision–recall curve (AUC) for detecting speed limit signs by more than 5% [52]. Others applied
advanced CNN techniques like depthwise separable convolution (DSC) [53] to reduce the complexity of
the recognition process and speed it up. They increased accuracy even more by breaking down the prob-
lem of traffic sign identification into two parts: traffic sign classification (TSC) and traffic sign detection
(TSD), and proposing an efficient network for each (ENet for TSC and EmdNet for TSD) [54]. Others
developed a framework for both symbol and text-based road sign classification, refinement, and detec-
tion. They used the Mask R-CNN architecture [55] for detection and refinement and the CNN architec-
ture for classification to obtain high accuracy [56]. For classification of degraded traffic signs, a multi-
scale CNN with dimensionality reduction is also implemented [57]. Furthermore, some studies claim to
get higher accuracy outcomes by focusing on certain regions of interest. Every traffic image is prepro-
cessed to get these regions, and then a CNN is applied to recognize the signs [58]. Many advanced road
traffic sign recognition research ideas are listed in Table 3.

3.2. Semantic and Motion Segmentation
In order to accomplish a scene understanding task, a self-driving car is required to know the segment

label under which each point of the received sensor signal is classified (e.g. road, car, building, pedestrian,
etc.). This problem is known as semantic segmentation. Many tasks that were formerly difficult or impos-
sible to accomplish have become achievable or even easy in the era of deep learning. As a result of these
advancements, study in a variety of fields has f lourished. Semantic segmentation was one of these areas
that had limited success until recently, when a lot of research has been done and significant results have
been obtained. The development of efficient point-wise classification is predicted to assist several indus-
tries that need precise semantic segmentation, such as autonomous driving [67, 68].

CNNs and autoencoders [17] are the most common deep learning architectures used for semantic seg-
mentation. Convolutional autoencoders are hybrid models that combine CNNs and autoencoders to per-
OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 31  No. 2  2022
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Table 3. Advanced road traffic sign recognition research ideas

Paper Topic Proposed approach Dataset Result

 [52] Speed limit road
signs recognition

Preprocessing technique 
of Contrast-limited Adap-
tive Histogram Equaliza-
tion (CLAHE) [59]. CNN 
for classification. Region 
Proposal Generation [60], 
R-CNN [61], and Hard 
Negative Mining [62] for 
detection

The US traffic sign set – 
the LISA-TS extension 
[63]

The area under 
precision–recall curve 
(AUC) of the speed limit 
sign detection is 
improved by more than 
5%

 [54] Efficient traffic 
sign recognition

CNN with advanced tech-
niques such as depthwise 
separable convolution 
(DSC) to increase the 
speed of the algorithm and 
data mining and multi-
scale operation to increase 
the accuracy

German Traffic Sign 
Recognition benchmark 
(GTSRB) [64]

Accuracy of 98.6%
with a small number 
of parameters

 [56] Classification, 
refinement, and detec-
tion of both symbol 
and text based road 
signs

Mask R-CNN architec-
ture for detection and 
refinement and CNN 
architecture for classifica-
tion

German Traffic Sign 
Recognition benchmark 
(GTSRB)

High accuracy 
achieving comparable 
performance with the 
state of the art

 [57] Classification of 
degraded traffic signs

Multi-scale CNN with 
dimensionality reduction

A subset of the German 
Traffic Sign Recognition 
benchmark (GTSRB).

Good performance 
comparable to the state 
of the art

 [58] Efficient traffic sign 
detection and recogni-
tion

Regions of interest are 
determined with efficient 
and parallelized prepro-
cessing of every traffic 
image, after which a CNN 
model is applied for traffic 
sign recognition. YOLO 
[65] architecture is used as 
a baseline detector

DFG traffic sign dataset 
[66]

Real-time detection
in high-definition 
images with high 
recognition accuracy
form research with far more accuracy and efficiency than before. A convolutional autoencoder is an auto-
encoder with convolutional and deconvolutional layers as encoder and decoder, respectively. To put it
another way, CNN models serve as the “backbone” structures for the autoencoders that are employed. To
construct their model, the majority of contemporary studies have employed some form of convolutional
autoencoder architecture. One of the first attempts in this direction was FCN [69]. It employed a fully
convolutional autoencoder architecture and accomplished semantic segmentation with a huge number of
parameters, making it unsuitable for real-time usage. It was also one of the first tries to eliminate fully con-
nected layers. SegNet [70] and SegNet-Basic [71] used VGG architecture [72] as a backbone for the
encoder and the decoder. They used the pooling indices of the encoder part to upsample data in the
decoder part. Other designs, such as UNet [73], improved segmentation accuracy by employing skip con-
nections between the encoder and decoder, as well as other approaches like data augmentation. Although
the above-mentioned models and other architectures such as PSPNet [74], Dilated [75], and DeepLab
[76] increased the accuracy of semantic segmentation models, there was still a need for a less complex
architecture to perform real-time semantic segmentation because some fields of application (e.g. autono-
mous driving and robotics) require very accurate semantic segmentation with a minimum amount of pro-
cessing time. This was not a simple task because capturing the complexity of the received images and point
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clouds necessitated a large amount of trainable parameters, and developing light segmentation models
without reducing segmentation accuracy was a challenging mission. Some models were designed with a
smaller number of parameters. FPN [77] and LinkNet [78] and other super lite models such as ApesNet
[79], Enet [80], ESPNet [81], ESCNet [82] and EDANet [83] tried to minimize the number of parameters
so that the semantic segmentation can be done in real-time or implemented for embedded systems.
Despite the fact that these models provided practical solutions to satisfy the real-time condition, crucial
applications such as road scene understanding in autonomous vehicles need much more segmentation
accuracy.

Road detection and segmentation is a very important task in autonomous driving. The live feed from
the camera can be processed in order to extract valuable information. From the driving scene, a saliency
image map [84] can be obtained to represent visual perception by extracting spatial, spectral, and temporal
information from the live stream and then applying entropy driven image-context-feature data fusion.
Both for still objects and non-station objects, the fusion output of the last step includes high-level descrip-
tors. After segmentation and object detection, road surface regions are selected by an adaptive maximum
likelihood classifier [85]. To allow the ego vehicle to recognize the road area, some researchers employ
supervised learning approaches. However, several recent studies recommend using semisupervised learn-
ing methods to solve the difficulty of a huge quantity of data necessary for training purposes. Advanced
deep learning approaches like generative adversarial networks (GANs) [86] and conditional GANs [87]
are said to produce excellent outcomes [88]. In dynamic situations, neural networks may also be utilized
to gather real-time road static information. For this purpose, several studies suggest light neural networks.
These kinds of efficient multi-task networks can perform occlusion-free road segmentation, dense road
height estimation, and road topology recognition all at the same time. In order for these networks to per-
form successfully, the loss function must be chosen carefully [89].

Semi-supervised learning approach using CNN architecture can also be used for semantic segmenta-
tion of 3D LiDAR data. A CNN model can be trained using both supervised samples that are manually
labeled and pairwise constraints [8]. However, recent research tends to benefit from the significant
improvement of deep learning technology. For real-time RGB-D semantic segmentation, RFNet [90] is
a designed fusion network with a CNN and an autoencoder. Two distinct branches are employed in the
encoder component of the proposed model to extract features for RGB and depth images independently.
The semantic segmentation function is completed using a simple decoder with upsampling modules and
skip connections. [91] developed a deep learning-based end-to-end model that applies a sensor fusion
approach. In order for semantic segmentation to be completed effectively, visual information from the
camera is fused with depth information from the LiDAR. This allows for accurate scene interpretation and
vehicle control. FSFnet [92] is a deep neural network that was proposed as an accurate and efficient
semantic segmentation model for autonomous driving. The general architecture is made of convolutional
and deconvolutional layers with the lightweight ResNet-18 [93] as a backbone (Fig. 7). They created the
feature selective fusion module (FSFM) for multiscale and multilevel feature fusion, which collects valu-
able information from respected feature maps both spatially and channelwise, employing adaptive pooling
layers to make a balance between accuracy and efficiency. To build a comprehensive understanding of the
driving scene while also considering objects of various scales and sizes, context aggregation module
(CAM) was introduced. CAM combines both global and multiscale context information efficiently using
the lightweight ANNN [94]. PointMoSeg [95] is another advanced segmentation model designed to dis-
tinguish moving obstacles in the driving scene. PointMoSeg is an end-to-end model in which a convolu-
tional autoencoder inspired by ResUNet [96] is adopted to online acquire point cloud data from a 3D
LiDAR and process it to produce a segmented current frame with segments representing moving obsta-
cles. The design of the proposed architecture benefits from modern deep learning technologies such as
sparse tensors [97] and sparse convolutions [98], and introduces two novel modules - a temporal module
and a spatial module – that are used to efficiently and effectively extract the features and context infor-
mation of the moving obstacles. There is no need for f lat road assumption or ego-motion estimation since
the suggested end-to-end architecture assures that high performance is generalized to scenarios when the
driving road has some slope or the driving environment is urban. Some other recent works such as Omni-
Det [99] proposed to train the deep learning model jointly on a variety of perception tasks including
semantic and motion segmentation, object detection, and depth estimation. OmniDet is claimed to per-
form multi-task surround-view fisheye camera perception in real-time.

Advanced semantic segmentation research ideas are listed in Table 4.
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Fig. 7. The architecture of FSFnet [92].
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3.3. Other Perception Related Research

Many aspects of perception have improved as a result of the recently created technology. Deep learning
algorithms, for example, can be used in data acquisition to overcome the problem of high transmission
bandwidth required for delivering high quality image frames in autonomous driving applications. Using
deep learning algorithms, only the most essential information bits can be picked, and the bandwidth
required to send this information is considerably lower than when the entire data is broadcasted. These
deep learning algorithms are incorporated in the camera, allowing it to record only the task-critical data
required for the autonomous car’s correct operation. It is difficult to design a smart camera system that
also works in real-time. To do this task properly, several researchers [110] recommended using a 3D-
stacked sensor architecture with a Digital Pixel Sensor (DPS) [111, 112]. So, sensor data from an autono-
mous car can be extremely huge. Compressing, storing, and transmitting LiDAR point cloud data in real-
time is challenging. Noise is also a major problem. Deep learning provides a solution to the previously
mentioned data volume issues. For point cloud data compression, a real-time deep learning technique
based on the UNet architecture [73] has been suggested. UNet reduces the point cloud data stream’s tem-
poral redundancy. The data from LiDAR point clouds is converted into a sequence of video frames. After
that, certain frames are utilised as reference frames, and the other frames are interpolated using a UNet
architecture. Temporal redundancy may be significantly reduced in this approach. A padding technique
is also employed to mitigate the harmful effects of noise [113]. ReViewNet [114] is another example of deep
learning in action. ReViewNet is described as an efficient deep learning-based solution for dehazing driv-
ing environment images, which is a critical prerequisite for perception. Their algorithm uses 12 channels
representing a quadruple-color space (RGB, HSV, YCrCb, and Lab). It also has a multi-look architecture
that provides the ability to further control the dehazing process and add more learning structs such as
multi-output (two MSE losses are used) and spatial pooling block (to extract features in shallow layers
without going deeper). This end-to-end architecture outperforms other state-of-the-art works, even the
models that use advanced deep learning architectures such as GANs [115–117], allowing the ego car to
remove haze from images so they are more realistic and detailed.

An autonomous system’s sensors can be subjected to a variety of assaults. Because reliability is so
important in autonomous driving, any autonomous vehicle design must be able to withstand many types
of assaults. Some academics recommend utilizing a 3D data hiding approach based on 3D-QIM (quanti-
zation index modulation) [118–121] on point cloud data collected by 3D LiDARs, for example. Data
integrity is guaranteed at the decision-making level by introducing a binary watermark into the point
cloud data at the sensor level. Advanced methods can also aid in the analysis of some LiDAR parameters
that have previously been unavailable for analysis. Spot pattern, waist, and divergence, in particular, may
be investigated using data obtained from spot ref lection on flat surfaces. This is useful for analysing the
LiDAR’s performance [122].
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Table 4. Advanced semantic segmentation research ideas

Paper Topic Proposed approach Dataset Result

 [88] Road detection A semisupervised learn-
ing (SSL) road detection 
method based on genera-
tive adversarial networks 
(GANs) and a weakly 
supervised
learning (WSL) method 
based on conditional 
GANs

KITTI ROAD
benchmark [100]

The Max F1-measures of 
SSL method and the 
WSL method are 95.53 
and 95.70%

 [90] RGB-D real-time 
semantic segmentation

CNN and autoencoder Cityscapes [101] MIoU 72.22%

 [8] Semantic segmentation 
of 3D LiDAR data in 
dynamic scenes

Semi-supervised learn-
ing approach using a 
CNN architecture

A dataset is generated 
using 3D LiDAR data
from a dynamic campus 
scene

The combination of a few 
annotations and large 
amount of constraint 
data significantly 
enhances the effective-
ness and scene adaptabil-
ity, resulting in greater 
than 10% improvement

 [89] Real-time occlusion-free 
road segmentation, dense 
road height estimation 
and road topology recog-
nition in dynamic envi-
ronments

CNN and autoencoder A multi-task dataset, 
named MultiRoad,
is built based on Seman-
ticKITTI dataset [102]

Acc 97.4%, MIoU 84.1%

 [103] Real-time and accurate 
semantic segmentation of 
3D LiDAR data

Graph, clustering,
and Gaussian process 
regression [104]

Dataset is generated from 
a campus road at Seoul 
National University. For 
more experiments, two 
KITTI datasets are tested 
[105]

tracking accuracy 
increased by 11.4%

 [67] Efficient semantic 
segmentation

CNN and autoencoder: 
asymmetric encoder–
decoder structure

CamVid [106], City-
Scapes, Gatech [107], 
KITTI Road Detection, 
and KITTI
Semantic Segmentation

Comparable performance 
to the state-of-the-art

 [68] Real-time semantic
segmentation

CNN and autoencoder Cityscapes 71.8% mIoU on
validation set, 69.3% on 
test set, 100+ frames per 
second (FPS) at resolu-
tion 640 × 360 on 
NVIDIA 1080Ti

 [78] Semantic segmentation CNN and autoencoder Camvid IoU 68.3%, mIoU 
55.8%.

Cityscapes IoU 76.4%, mIoU 
58.6%.

 [80] Semantic segmentation Lite CNN and autoen-
coder

Camvid IoU 68.3%, mIoU 51.3%
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4. LOCALIZATION IN AUTONOMOUS DRIVING
Localization is the process of determining the precise location of an autonomous vehicle by employing

systems such as GPS, dead reckoning, and road maps. The autonomous vehicle’s ability to perform well
in the localization process is critical since it keeps the vehicle moving along the correct planned path. In
the vast majority of situations, centimeter-level precision is necessary. Localization is challenging, partic-
ularly in urban areas where the signal is constantly disrupted by nearby buildings and moving objects.
Mapping is the process of producing accurate maps of driving regions that may be used for navigation. In
most cases, conventional map resources are insufficient to function securely. As a result, high-resolution
HD maps of the environment are necessary. The simultaneous localization and mapping (SLAM) prin-
ciple has recently become more popular and it is now used to derive most practical localization methods
as it combines signals from various sensors to build a complete understanding of the object’s location
inside the surrounding environment, and therefore, it is more accurate than traditional localization meth-
ods that depends only on GPS and fixed anchors in the external environment [12, 123]. SLAM refers to
the method of constructing and updating a map of the driving environment while also identifying the pre-
cise location of the autonomous vehicle inside that map. Conventional methods of SLAM exploit on-
board sensors to accomplish localization. Visual SLAM and LiDAR SLAM are the most common ways
[124].

Traditional localization methods use a GNSS receiver in collaboration with other on-board sensors
such as IMU. The received information from those sources is then processed by methods such as Kalman
Filter [125, 126], Hidden Markov Model [127, 128], and Bayesian Network [129]. In [9], they use an inter-
acting multiple model (IMM)-filter-based information system [130, 131] for localization. They combined
GPS data with data from other sources (wheel speed sensor, steering angle sensor, and yaw rate sensor),
as per current study trends. This integration is necessary since GPS data is influenced by a variety of fac-
tors, causing localization to drift. The localization algorithm can adjust to changing driving circumstances
thanks to the usage of the IMM filter. The GPS-bias technique is also included in order to increase the
accuracy and reliability of the localization process. In [11], they propose a low-cost localization method.
The localization approach is said to be more accurate than earlier efforts since it uses lane detection, dead
reckoning, map-matching, and data fusion techniques. A lane marking detector with a short range is used
to detect the lanes. The precise vehicle location is established by creating a buffer called Back Lane Mark-
ings Registry (BLMR) online, and integrating this registry with information received from gyroscopes,
odometry, and a prior road map.

Buildings and other artifacts, as previously noted, can create severe perturbations in the received sig-
nals required for localization, affecting conventional localization systems such as GPS and dead reckon-
ing. In general, these systems are very accurate. However, owing to the noise of the dead reckoning sensors
and the inaccuracy in the dead reckoning integration, reliable localization cannot be accomplished in
metropolitan areas during long periods of GPS outage. To address these issues, some researchers pro-
posed a precise Monte-Carlo localization technique based on a precise digital map and perceptual data
fusion of motion sensors, low GPS, and cameras [10]. Particle filtering [132] is used for combining several
types of sensor probabilistic distributions (as they are non-Gaussian distributions). A method for model-
ling sensor noise is also provided in order to improve localization performance.

Despite the fact that numerous visual SLAM algorithms have achieved accurate and robust localiza-
tion [133, 134], real-time restrictions must yet be investigated. [135] demonstrated an effective visual
SLAM capability that eliminates the problem of the frame losses associated with real-time performance.
 [92] Efficient and accurate 
semantic segmentation

Deep neural network 
with a novel feature 
selective fusion module 
(FSFM) and a novel con-
text aggregation module 
(CAM)

Cityscapes MIoU 77.1%

Camvid [108] MIoU 75.1%

 [95] Moving-obstacle 
segmentation

CNN and autoencoder 
with novel temporal and 
spatial modules

nuScenes dataset [109] Acc 67.81%, IoU 47.89%

Paper Topic Proposed approach Dataset Result

Table 4. (Contd.)
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Fig. 8. The localization system architecture proposed in [140].
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A four-threads architecture was implemented. Frontend thread is implemented to recognize the pose of
the camera in real-time. The mapping thread then analyses additional keyframes in order to construct 3D
map points while keeping drift to a minimum. The keyframe poses and 3D map point placements are
refined by the state optimization thread. An online bag-of-words based loop closer thread [136, 138] is
used specifically to allow long-term localization in large-scale maps. [139] provided a map-saving mech-
anism to extend ORB-SLAM 2 that was presented in [134], leading localization error to drop. [140] pro-
posed an innovative end-to-end framework that takes input from a GPS receiver, OpenStreetMap (OSM)
datasets [141], IMU and a front camera, and then, takes full advantage of probabilistic modeling (specif-
ically Hidden Markov Model (HMM) and Bayesian Network (BN)) in order to conduct all aspects of
localization (road level, lane level, and ego-lane level localization) (Fig. 8).

Many approaches were proposed for LiDAR SLAM. For example, LOL [142], and HDL-Graph-
SLAM [143] used Iterative Closest Point (ICP) [144] that tries to minimize the Euclidean distance
between point pairs in order for the transformation matrix to converge. The computing cost of these
approaches is significant, and they are sensitive to environmental factors. Some other models such as
LOAM [145], and LeGO-LOAM [146] used the extracted geometric features to accomplish convergence.

Other conditions such as snowy weather and wet road surfaces reduce the quality of the received sig-
nals, lowering localization accuracy. For example, in case of using LiDAR sensors, LiDAR reflectivity
drops when the road surface is wet. Also, the probable snow lines may deform the expected road context
in LiDAR images. These issues can be overcome by employing advanced techniques such as principal
component analysis (PCA) [17] to gain a better understanding of the surrounding environment, and then
using the leading PCA components to support an accumulation approach aimed at increasing the density
of LiDAR data. In addition, for snow situations, an edge matching technique that matches previously
recorded map pictures with online LiDAR images is developed to ensure correct localization [5].

Occupancy grid is an important way to represent the driving environment, where each cell of the grid
contains information characteristics of the objects inside it [147]. The ground reflectivity inference grid is
a variant of occupancy grid used in autonomous driving, in which the ground’s reflection is linked with a
position in the grid proportional to the projection measurement of its range into the grid’s reference frame
[148]. The authors of [149] recommended adopting a novel grid representation that incorporates ref lec-
tivity edges generated by combining distinct reflectivity gradient grids from fixed laser views. This repre-
sentation is claimed to enable laser-perspective and vehicle motion invariance, negating the requirement
for further post-factory laser reflectivity calibrations and facilitating many processes including localiza-
tion.

Particle filtering was also used in [150] where they proved that accurate localization in large-scale envi-
ronments can be achieved by simple input components including light-weight satellite and road maps
from the internet, car odometry and a 3D LiDAR. [151] created a method to deal with the challenging 3D
localization of LiDAR point cloud data. Data accumulation is used in their solution. Due to the high com-
plexity of the problem, the processing step of 3D point cloud data of successive frame steps may need a
large number of computations. They kept various data structures among those frames by employing data
accumulation, which allowed the time steps to save a lot of computations. The information about recently
occupied voxels is collected by filtering a stream of 3D point cloud data via a proposed Dynamic Voxel
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Fig. 9. System architecture in [151].
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Grid (DVG). The first phase’s output is then sent into an incremental region growing segmentation mod-
ule [152], which combines it with the already clustered data (Fig. 9).

Even though many research works took advantage of intensity measures to extract intensity features
and used them for accurate SLAM [153, 154], most of these proposals require huge data collection effort,
are not consistent when the surrounding environment changes, or are applied only for 2D localization.
[124] combined intensity features with geometric features in order to perform LiDAR SLAM accurately
and reliably. An intensity-based loop closure detection (frontend odometry estimation) in addition to fac-
tor graph optimization (backend optimization) are used together to localize the autonomous car (Fig. 10).
By using both geometric and intensity features, the performance of the SLAM system is claimed to
improve.
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Occupancy grid map (OGM) based 2D LiDAR SLAM [155, 156] was implemented to perform well in
indoor environments. However, they cannot be generalized to work sufficiently in outdoor environments.
In addition, localization methods that employ 3D LiDAR data in the form of point cloud [5], voxels [151],
or extracted features [124] are very computationally expensive and, in many scenarios, they cannot be
implemented for real-time LiDAR SLAM. Therefore, many researchers [157, 158] suggest using 2.5D
heightmaps for SLAM, claiming improved performance compared to conventional 2D and 3D methods
that overcomes the problems of local maximum, drifting, and complexity.

For autonomous driving, precise SLAM is required. However, due to a variety of reasons, SLAM
remains a difficult problem to address. For example, SLAM (along with other localization methods) has
a tendency to drift over a lengthy driving distance. As a result, the SLAM algorithm gets less accurate as
the driving distance increases. Another issue is that while maps are necessary for SLAM, they are not
always feasible under all driving situations. In other words, when an autonomous vehicle is given a true
trajectory to follow, employing a common SLAM approach causes the followed trajectory to deviate from
the true one over time. As a result, very accurate maps under a variety of weather situations are needed to
help with the localization process (which are not always available).

5. CONCLUSIONS
Autonomous driving is a rapidly evolving area with a plethora of anticipated advantages. For self-driv-

ing cars to make the correct decision at the appropriate moment, they need accurate and quick perception
and localization. A well-chosen sensor type and arrangement assists the perception and localization sys-
tem in generating a complete picture of the surrounding region, allowing for a f lawless comprehension of
the driving scenario. The autonomous driving area has achieved outstanding achievements in all aspects,
including object identification, semantic segmentation, and simultaneous localization and mapping,
thanks to the recently developed technologies such as the modern deep learning methods. These accom-
plishments enabled the ego vehicle to attain extremely high accuracy in perception and localization tasks
while also taking into account real-time concerns. However, inclement weather and congested metropol-
itan areas cause even the state-of-the-art systems to fail. As a result, further study is needed to increase the
performance of the perception and localization systems in all driving environments and weather condi-
tions.
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