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Abstract—This paper is concerned with the generalized finite-time stability, boundedness and stabili-
zation for fractional-order memristive neural networks (FMNNs) with the fractional-order 0 < α < 1.
Under the fractional-order Filippov differential inclusion frame, FMNNs are modelled as a frac-
tional-order differential equation with discontinuous right-hand. Based on the topological degree
property, the existence of equilibrium point of FMNNs is proved. By means of the generalized Gron-
wall inequality, the Laplace transform and the Lyapunov functional candidate, some conditions to
guarantee the generalized finite-time stability and boundedness for FMNNs are derived in terms of
linear matrix inequalities (LMIs). In addition, by using appropriate feedback controller, the general-
ized finite-time stabilization condition is also addressed in forms of LMIs. Finally, two examples are
given to demonstrate the validity of the theoretical results.
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1. INTRODUCTION
In recent years, neural networks (NNs) have been applied in different fields widely, such as secure

quantum communication, optimization, signal and image processing and automatic control, etc. [1–4].
Many results with respect to dynamics of integer-order NNs have been done (see [5–8], and references
therein).

As we all know, compared with integer-order calculus, fractional-order calculus has better advantage
for the description of memory and hereditary properties of various processes. It has found that, fractional
calculus can be applied to precisely describe physical systems, biological system, colored noise, finance
and so on [9–11]. Taking the above facts into account, it is significant for scholars to analyze the dynam-
ical behavior of NNs by applying the fractional-order calculus. In [12], Arena et al., firstly proposed a
fractional-order cellular neural network model. In [13], the authors presented a fractional-order three-
network, which put forward limit cycles and stable orbits for different parameter values. It is worth noting
that some excellent results on dynamical behaviors, such as the stability, stabilization and synchroniza-
tion, have been developed for fractional-order neural networks (see [14–20]).

Memristor, as the fourth basic passive circuit element along with resistor, inductor and capacitor (see
Fig. 1) was firstly proposed by Chua [21], and is realized by the research team from the Hewlett-Packard
Lab in 2008 [22]. As a two-terminal passive device, the value of Memristor which is called as memristance,
relays on magnitude and polarity of the voltage, and shares many properties of resistor and the same unit
of measurement (Ohm). According to the characteristics of current–voltage (see Fig. 2), it is easy to find
that memristor exhibits the feature of pinched hysteresis and is same as the neurons in the human brain.
Therefore, the memristor possesses a great potential in application.

Recently, some researchers begin to construct the memristive neural dynamic networks through
replacing the resistor with the memristor [23, 24]. The hybrid complementary metal-oxide-semiconduc-
tor is an important component of the memristor-based neural networks, so that memristive neural net-
works could have a much wider application in bioinspired engineering [25–28].

Meanwhile, more and more scholars have paid attention to the dynamic behavior of the memristor-
based neural networks and achieved many significative results (see [29–40]). In [29], Bao and Zeng dis-
cussed global Mittag–Leffler multistability for periodic delayed recurrent neural network with memris-
11
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Fig. 1. The relation between four fundamental elements.
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Fig. 2. Theoretical i–u characteristics of a memristor with applied voltage.
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tors, and the global exponential stability for switched memristive neural networks with time-varying delays
was considered in [30]. In [31], authors studied the global exponential stability of memristive neural net-
works with impulse time window and time-varying delays, some stability conditions were proposed.
Zhang and Shen proposed some new algebraic criteria for synchronization stability of chaotic memristive
neural networks with time-varying delays in [32]. In [33], weak, modified and function projective syn-
chronization of chaotic memristive neural networks with time delays was given by Wu and Li et al. Besides,
Wu and Zhang et al. also investigated the adaptive anti-synchronization and  anti-synchronization for
memristive neural networks with mixed time delays and reaction-diffusion terms in [34]. In [35], authors
derived some sufficient conditions and explored the global anti-synchronization of a class of chaotic
memristive neural networks with time-varying delays. For the memristive neural networks with mixed
time-varying delays, Wu and Han et al. considered its exponential passivity in [36]. In [37] and [38], Chen
et al. discussed the global Mittag–Leffler stability and synchronization of memristor-based fractional-
order neural networks with or without delays. In [39], authors investigated the global finite-time synchro-
nization for fractional-order memristor-based neural networks with time delays. In [40], Bao and Cao
considered the global projective synchronization for fractional-order memristor-based neural networks.
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GENERALIZED FINITE-TIME STABILITY AND STABILIZATION 13
The reliable stabilization condition was proposed for memristor-based recurrent neural networks with
time-varying delays by Mathiyalagan etc. in [41].

It should be mentioned that, in practical applications, the main attention is paid to the dynamics of
systems over a finite time interval (see [16, 18–20, 39]). In [16], authors studied the global synchroniza-
tion in finite time for fractional-order neural networks with discontinuous activations and time delays.
Subsequently, in [18] and [19] Peng and Wu considered the global non-fragile synchronization and the
global projective synchronization in finite time for fractional-order discontinuous neural networks with
nonlinear growth activations based on sliding mode control strategy. In [20], the non-fragile robust finite-

time stabilization and  performance analysis was proposed for fractional-order delayed neural net-
works with discontinuous activations under the asynchronous switching. In [42], Song etc. discussed the
global robust stability in finite time for fractional-order neural networks. And finite-time stability analysis
of fractional-order time-delay systems with Gronwall’s approach was performed in [43]. It should be
pointed out that, very little attention has been paid on the generalized finite-time stability and stabilization
of FMNNs.

Motivated by the preceding description, our aim is to explore the issue of generalized finite-time sta-
bility, boundedness and stabilization for FMNNs. The main novelty of our contribution lies in three
aspects:

(1) The existence of equilibrium point is proved by applying the topological degree theory;

(2) The conditions to guarantee the generalized finite-time stability and boundedness are given in
terms of LMIs;

(3) A new feedback controller is designed;

(4) The generalized finite-time stabilization condition is presented in forms of LMIs.

The rest of this paper is organized as follows. In Section 2, some preliminaries and the model formu-
lation are introduced. Sufficient criteria about generalized finite-time stability, boundedness, and stabili-
zation of FMNNs are derived in Section 3. Two numerical simulations are given in Section 4. Finally con-
clusion is drawn in Section 5.

2. PRELIMINARIES AND MODEL DESCRIPTION

2.1. Preliminaries
In this section, we first recall some definitions and Lemmas, which will be useful to derive the main

results.

Definition 2.1 [9]. The fractional integral of order  for a function  is defined as

where  and ,  is the gamma function, which is .

Definition 2.2 [9]. Caputo’s derivative with fractional-order  for a function  is

defined as

where  and n is a positive integer such that . Moreover, when 0 < α < 1,

A function frequently used in the solutions of fractional-order systems is the Mittag–Leffler function
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where . The Mittag–Leffler function with two parameters appears most frequently and has the form
as follows:

where , and z is complex number. Obviously, for , we have ,

, also .

The Laplace transform  of  is defined by

where t and s denote the variables in the time domain and Laplace domain, respectively, ν is the real num-

ber, the real part  of s is .

Consider the fractional-order differential equation with discontinuous right-hand

(1)

where f(x) is a discontinuous function. Define the set-valued map of f(x) as

where  is the ball of center x and radius , intersection is taken over all sets N of

measure zero and over all , and  is Lebesgue measure of set N.

Definition 2.3 [44]. A Filippov solution x(t) of the system (1) with initial condition x(0) = x0 is an abso-

lutely continuous function on any compact subinterval [t1, t2] of [0, T], which satisfies x(0) = x0 and the

differential inclusion:

Let  be a constant vector, if , then  is said to be the equilibrium point of the frac-

tional-order system (1).

Definition 2.4. The equilibrium point  of the system (1) is said to be generalized finite-time stable

with respect to (b1, b2, T, R) with positive scalars b1, b2, T, b2 > b1 and matrix , if

then

Moreover, consider the fractional-order differential equation system

where  is the disturbance input, and satisfies ,  is a constant, .

Definition 2.5. The equilibrium point  of the system (1) is said to be generalized finite-time bounded
with respect to (b1, b2, T, R, S) with positive scalars b1, b2, T, b2 > b1 and matrix R > 0, if

then
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Lemma 2.2 [43]. Consider that  and  are nonnegative and local integrable on [0, T], ,

 is a nonnegative, nondecreasing, and continuous function defined on , (con-

stant), , satisfying

If  is a nondecreasing function on [0, T], then

where  is Mittag–Leffler function.

Lemma 2.3. Let , given any , and matrix A, such taht

Supposing  is a nonempty, bounded and open subset of . The closure of  is denoted by  , and

the boundary of  is denoted by . The following two Lemmas give two properties of the topological
degree.

Lemma 2.4 [42]. Let  be a continuous homotopy mapping. If  has

no solutions in  for  and , then the topological degree  of

 is a constant which is independent of  In this case, .

Lemma 2.5 [42]. Let  be a continuous mapping. If , then there

exists at least one solution of H(x) = z in Ω.

2.2. Model Description

In this paper, we consider FMNNs described by

(2)

where 0 < α < 1, ,  is the number of units in a neural network,  denotes the state variable

associated with the ith neuron; ci > 0 is a constant;  represents the external input;  stands for the neu-

ral activation function;  is connection memristive weight, which is defined as

where switching jump , and weights  and  are constants, and .

Set, x(t) =    , ,

. The system (2) can be rewritten as the following vector form:
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Noting that system (3) is a fractional-order differential equation with discontinuous right-hand, the solu-

tion of the system (3) is usually considered in Filippov’s sense. Based on Definition 2.3,  is the solu-

tion of FMNNs (3) if  is an absolutely continuous function on any compact subinterval [t1, t2] of ,

and satisfies x(0) = x0 and the differential inclusion:

In order to ensure the existence and uniqueness of the solutions of FMNNs (3), the following assumption

is made for the activation function  :  :  is Lipschitz continuous, i.e. for any given

, there exists L = diag(l1, l2, …, ln), such that ;

.

Lemma 2.6. Under the assumption , the following inequality holds

Proof. For any , we separate four cases to illustrate the inequality in the above Lemma.
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Case 2: If  then

Case 3: Let , , in this case, we have  or . If , then

And another case, if , then

Case 4: This case  is similar to Case 3, so we can also get

3. MAIN RESULTS
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where . It’s obvious that  is an equilibrium point of the FMNNs (3), if and only

if .

Let , , where . It’s easy to find that

 is a continuous homo-topy mapping.

Now, we construct a convex region , such that

(i) ,

(ii) .

By Lemma 2.3, we have
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U(x) = 0 has at least a solution in . This indicates that FMNNs (3) has at least an equilibrium point in .
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selection theorem, there exists a measurable function

, such that
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Combining  with (6) yields

This shows that FMNNs (3) is generalized finite-time stable.

Consider the following FMNNs

(11)

The following theorem introduces the generalized finite-time boundedness of FMNNs (11).

Theorem 3.3. Under the assumption , if there exists a scalar , a matrix Q1 > 0, , and

a nonsingular matrix , such that

(12)

(13)

where , then, FMNNs (11) is generalized finite-time bounded with respect to (b1, b2, T, R, S).

Proof. Consider the Lyapunov function:

In the light of Lemma 2.1, computing the Caputo’s derivative along the trajectory of (11), we have
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(17)

Integrating with order  on both sides of (17) from 0 to t, where , we can obtain that

By means of Lemma 2.2, it follows that

(18)

Noting , we have

Taking above two inequalities into (18), it forms that

(19)

Comparing (19) with (13), it follows that . This proof is completed.

In the subsection, we pay attention to designing the feedback controller u(t) = Ky(t) for solving the
finite-time boundedness problem of the following fractional-order system

(20)

Theorem 3.4. Suppose that  holds. If there exist a scalar , a matrix Q1 > 0, , a

nonsingular matrix , and a matrix , such that (13) and

(21)

hold, where , and , then,
FMNNs (20) is generalized finite-time stabilized with respect to (b1, b2, T, R, S) under the feedback con-

troller .

The proof is similar as Theorem 3, so omitted.

4. NUMERICAL EXAMPLES

In this section, we apply two examples to illustrate the validity and effectiveness of the proposed theo-
retical results in this paper.

Example 1. Consider the following FMNNs:
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Fig. 3. The trajectory of state  of system (22) versus time.
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where , and ,

The initial conditions of (22) are determined as . Choose parameters b1 = 1, b2 = 2, ,

, , where E is taken as the identity matrix. By using Matlab’s LMI control toolbox to calculate
(4), we can get the feasible solution

Accordingly, we can know , which satisfies the condition (6). By Theorem 3.2, FMNNs

(22) is generalized finite-time stable with respect to .

The state trajectory in  with the initial value  is shown in Figs. 3 and 4. Figure 4 denotes the

trajectory of  of system (22).

Example 2. Consider the finite-time boundedness problem about the following FMNNs:

(23)

where , and , .
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Fig. 4. The trajectory of  of system (22) versus time.
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Fig. 5. The trajectory of state  of system (23) versus time.
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The corresponding parameters are chosen as: , , , , ,

. Numerical simulation has been operated for system (23) with the initial value ,

which satisfies the condition . Let  we attain the reasonable solution:

By Theorem 3.3, FMNNs (23) is finite-time bounded. The state trajectory in  is shown in

Figs. 5 and 6. From Fig. 6, we conclude that FMNNs (23) is generalized finite-time bounded with respect

to .
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Fig. 6. The trajectory of state  of system (23) versus time.
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5. CONCLUSIONS

In this paper, we have investigated the generalized finite-time stability, boundedness and stabilization
for a class of FMNNs. The existence of equilibrium point for the considered FMNNs has been proved.
The conditions with respect to the generalized finite-time stability and boundedness have been derived in
terms of LMIs. Under designed feedback controller, the generalized finite-time stabilization condition
has been also achieved in the forms of LMIs.

It would be interesting to extend the results of this paper to FMNNs with delays, in addition, how solve
the equilibrium and uniform charge distribution and of FMNNs, these will be the challenging issues for
future research.
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