
ISSN 1060-992X, Optical Memory and Neural Networks, 2021, Vol. 30, No. 1, pp. 37–50. © Allerton Press, Inc., 2021.
Encoding and Decoding of Recursive Structures
in Neural-Symbolic Systems

A. Demidovskij*
Higher School of Economics, Nizhny Novgorod, 603014 Russia

*e-mail: ademidovskij@hse.ru
Received September 7, 2020; revised December 4, 2020; accepted December 8, 2020

Abstract—One of the ways to join the connectionist approach and the symbolic paradigm is Tensor
Product Variable Binding. It was initially devoted to building distributed representation of recursive
structures for neural networks to use it as the input. Structures are an essential part of both formal and
natural languages and appear in syntactic trees, grammar, semantic interpretation. A human mind
smoothly operates with the appearing problems on the neural level, and it is naturally scalable and
robust. The question arises of whether it is possible to translate traditional symbolic algorithms to the
sub-symbolic level to reuse performance and computational gain of the neural networks for general
tasks. However, several aspects of Tensor Product Variable Binding lack attention in public research,
especially in building such a neural architecture that performs computations according to the mathe-
matical model without preliminary training. In this paper, those implementation aspects are
addressed. A proposed novel design for the decoding network translates a tensor to a corresponding
recursive structure with the arbitrary level of nesting. Also, several complex topics about encoding such
structures in the distributed representation or tensor are addressed. Both encoding and decoding neu-
ral networks are built with the Keras framework’s help and are analyzed from the perspective of applied
value. The proposed design continues the series of papers dedicated to building a robust bridge
between two computational paradigms: connectionist and symbolic.

DOI: 10.3103/S1060992X21010033

1. INTRODUCTION
In the artificial intelligence research community, at least two paradigms were developed parallel for an

extended period: symbolic and connectionist. However, the field’s future is likely to be connected to co-
existence, and even their symbiosis [29].

The traditional symbolic approach is conceived as the continuous development of methods that
manipulate symbols. In other words, such methods operate with some explicit representations and aggre-
gate structures that consist of symbols and their combinations. One of the known limitations of this
approach is the inability to process data robustly using distributed representation and parallel computa-
tions. Simultaneously, symbolic structures are transparent for end-users (for example, fuzzy assessments),
there are understandable intermediate results, and, therefore, it is relatively simple to analyze them and
perform validation.

The connectionist paradigm is intrinsically built around the concept of massive parallelism [34, 35].
This parallelism is achieved via the usage of multiple uniform units, each performing some simple com-
putational operation and connected selectively to each other. The connectionist level is characterized
mostly by artificial neural networks. One of the important aspects of this paradigm is that representations
are distributed across computation units, and it is difficult to identify where are particular parts of the
input data in that distributed form. This approach is famous for its f lexibility and robustness due to its
massively parallel nature.

The main challenge is building the bridge between two paradigms to gain benefits from the advantages
of both approaches and eliminate, or at least mitigate, cons of each other [2]. The ability of solely connec-
tionist models to perform cognitive tasks and reasoning is substantially debated [29]. Simultaneously,
building a fully integrated generic neural-symbolic system is a challenging goal that cannot be achieved
with existing approaches and instruments. What is more realistic is building systems capable of performing
some particular tasks. For example, one can select the task of multi-criteria linguistic-based decision
37

38 DEMIDOVSKIJ
making as an appropriate motivating problem [11, 42]. Creation of monolithic neural-symbolic systems
for various expert and decision support systems is already a highly demanded and actual task [6, 20, 33].

Information representation is a crucial element of any neural-symbolic system as it defines the way
symbolic and connectionist levels communicate with each other. For the past four decades, multiple types
of representation were introduced [19]: strictly local, distributed, local, as micro features and by coarse
coding. Distributed representations were shown to be more compact and efficient than any type of local
representation [27].

This paper considers a special type of distributed representations called Tensor Product Representa-
tions [39]. These representations’ special property is non-lossy encoding and decoding of recursive sym-
bols, such as binary trees. There is existing mechanism of encoding such symbols in distributed format
[9, 14]. This work aims at defining a neural architecture capable of decoding symbols from its distributed
Tensor Representation without prior learning. According to [29], it is necessary “to identify a well-moti-
vated set of initial primitives, which might include operations over variables, mechanisms for attention,
and so forth”. Elaborated neural network complements the neural primitives toolbox of a system architect
and, by design, it is a re-usable building block not only for the final decoding of symbols but also for
extraction of structural elements of encoded structure.

The structure of the paper is as follows. Section 2 contains brief review of the background study. Then,
Section 3 covers the detailed description of the Tensor Product Variable Binding approach to demonstrate
its application to the sample recursive structure. After that, Section 4 gives a high level architecture of the
Tensor Product Variable neural networks, as well as a proposed design for the decoding network that per-
forms the unbinding task. Finally, Section 5 provides conclusions and defines directions of further
research.

2. BACKGROUND STUDY
Building various structures is a natural step during the analysis of both formal and natural languages,

which is not bound to the construction of syntactic parse trees but is also required to investigate various
phonology aspects, semantic interpretation. In general the considerable question is definition of struc-
tural well-formedness [27, 39]. In particular, Smolensky proposed the Harmonic grammar approach that
tackles a grammar from the standpoint of specification of building recursive structures on the one hand
and a device to construct it on the other. One of the major aspects of the linguistic structures analysis is
the validity of the sentence particles’ semantic interpretation alongside the sentence structure’s usual
parsing. Using the Harmonic grammar approach, Smolensky demonstrated the opportunity to identify
the Harmony function on both the connectivist and symbolic levels. Maximization of Harmony on the
connectivist level allows identifying the sentence’s acceptability to the set of soft rules. Apart from the
Harmony grammar [27, 39], a similar approach of translating symbolic linguistic structures to the distrib-
uted representation with the idea of further manipulation of the structure on the tensor level was proposed
as an Active-Passive Net [28]. This neural network demonstrates how the connectivist paradigm is applied
to the distributed representation of the sentence and produces the encoded structure containing informa-
tion about the presence of the active or passive voice in the original sentence as the output. This simulation
demonstrates the theoretical capabilities of such solutions.

The task of symbolic structures translation to the distributed representation can be solved with different
methods. One of them is using First-Order Logics (FOLs). Formal logics are relatively simple and for-
mally defined languages that use strictly defined rules to express information rigorously. In order to use
this method, we need to formulate required knowledge in an appropriate form, and since FOL expressions
can be translated to the sub-symbolic level, our knowledge is automatically translated to it and can be used
by neural networks [36, 40]. There are plenty of methods that represent different entities as high-dimen-
sional vectors: Holographic Reduced Representations (HRRs), Binary Spater Codes, and so on [4]. Vec-
tor Symbolic Architectures (VSA) [18]. It assumes the creation of distributed representations of a fixed
size. Therefore, the dimensionality of these hyperdimensional representations [23] hugely depends on the
applied task [24, 25], where vectors of different size are needed in order for it to remember information
without loss. Elaboration of distributed representations can introduce several requirements. Building dis-
tributed representations [26, 30] of the structures that were derived as a result of natural language process-
ing should keep the context for the encoded symbols [3, 5]. Simultaneously, there is a huge need to rep-
resent not only atoms, like words but structures consisting of atoms. When applied to more vague scenar-
ios, like Multi-Attribute Linguistic Decision Making, information about the problem situation can be
organized in the form of a hierarchy of ontologies that is by definition a symbolic structure and, therefore,
can be translated to the sub-symbolic level [41, 43].
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

ENCODING AND DECODING OF RECURSIVE STRUCTURES 39
Another approach to building sub-symbolic representations is Tensor Product Variable Binding
(TPVB) [37]. This method enables building distributed representations of fairly complex symbolic struc-
tures, for example, binary trees. The unique property of this approach, compared, for example, to the VSA
paradigm, is the non-lossy decoding of structure from such a distributed representation. The second
important aspect is that a range of symbolic operations can be effectively expressed as tensor manipula-
tions. The latter attribute allows Tensor Product Variable Binding (TPVB) to become a foundation for
neural-symbolic algorithms because Artificial Neural Network can serve as a universal executor of these
tensor operations. It is essential to mention that creation of such neural networks that do not require train-
ing but allowing to perform complex tasks is a challenging and developing goal [32, 33].

In the framework of a broader research, authors try to elaborate neural-symbolic system for decision
support systems and expert systems. It implies the need for such a representation that allows non-lossy
encoding and decoding of symbols and the support of symbolic operations as tensor products. Due to the
reasons mentioned above, local representations cannot be considered an appropriate choice to represent
complex structures. Simultaneously, representations with a fixed representational dimension are not
applicable as symbols should be correctly decoded after the neural reasoning. Indeed, by building a neu-
ral-symbolic decision-making system, the neural level’s result would be an encoded symbolic structure
representing the final solution of the original problem. We can compare it with tasks when, for example,
decoding is not needed, and distributed representations are used as-is for a classification task when it is a
closeness of hyperdimensional vectors that matters [25]. So, it is critical for the binding mechanism to be
non-lossy. Therefore, the Tensor Product Representation Binding mechanism was selected as the focus
of current research. In the next session, there are details and an example of its application to the sample
recursive structure.

3. METHODS: TENSOR PRODUCT VARIABLE BINDING FOR A RECURSIVE STRUCTURE

3.1. Encoding Structure in a Distributed Representation
To understand the key principles used in the proposed design of both encoding and decoding networks,

it is important to go through the sample structure’s whole computational f low. There is already a study
dedicated to elaborating neural design for the simple structure with only one nesting level [9]. The current
paper demonstrates how this approach can be scaled for the structure with the arbitrary nesting level.

Tensor Product Variable Binding is a way to transform the symbolic structure into a vector format.
According to Paul Smolensky [37] it is built on the simple tensor multiplication operation.

Definition 1. Fillers and roles [37]. Let be a set of symbolic structures. A role decomposition for
 is a pair of sets , the sets of fillers and roles, respectively and a mapping:

(1)

For any pair , the predicate on is expressed: fills role .
Definition 2. Let be a symbolic structure that consists of pairs , where represent a filler and

represents a role. Tensor product is calculated in the following way:

(2)

A sample structure that is analyzed in the current paper is shown in Fig. 1. It has a nesting level equal
two (Fig. 1). In terms of Tensor Product Variable Binding, this structure has three fillers: . Also,
the current structure is supposed to represent a binary tree. Therefore there are two distinct basic roles:
that denotes the left child and that denotes the right child. The root of the tree is denoted as . The first
step in Tensor Product Variable Binding is defining each filler’s particular role in the structure. Given that
there are only two basic roles, each filler role is a combination of them. We denote it as a bit string con-
taining either “0” or “1”. For example, should be interpreted from left to right as “left child of the
right child of the left child of the right child of the root”. In the presented structure, filler plays the role

, filler — , — .
Each filler and role should be mapped with a particular vector representation. There is only one strong

requirement: fillers, defined on some vector space , should be linearly independent among each other,
and roles defined on some vector space should be independent among each other. Therefore, there is
assignment for fillers and roles (3).

S /F R
S ,()F R

μ : × ; , .� �/ () () /F R F R Pred S f r f r

∈ , ∈f F r R S /μ , =() /F R f r f r f r
s { , }i if r if ir

ψ

ψ = ⊗ .i i
i

f r

, ,A V P
0r

1r ε

0101r
A

0r V 01r P 11r

FV
RV
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

40 DEMIDOVSKIJ

Fig. 1. A recursive structure for demonstration of Tensor Product Variable Binding.

A V

P

(3)

Given the notation of roles and fillers, two primitive operations are defined: and . The
 operation takes two trees as arguments and creates another tree that has tree as a left child, or

in terms of TPRs gets the role (r , and as a right child, or in terms of TPRs gets the role . The vital
requirement is to select role vectors so that they are linearly independent. The same requirement applies
to the set of fillers vectors as it was proved in [38] the operation can be expressed as a matrix-vector
multiplication.

Definition 3. Let denote role vectors, —symbolic structures. Then, joining operation is
defined:

(4)

Definition 4. Let denote a role vector, is a length of any filler vector. Then joining matrix is
calculated in the following way:

(5)

where is the identity matrix on the total role vector space, is the identity matrix . matrices
are defined in the manner similar to the matrices that join two sub-trees in one structure [38].
Extraction operation is defined analogously. However, it is used to extract an element stored in the tree
by the given role. For example extracts the child of tree that is placed under role . The only dif-
ference in the formulation of matrix is that dual role vectors are used instead of direct roles: or .

Definition 5. Let denote a role vector, —a symbolic structure. Then, extraction opera-
tion is defined:

(6)

Definition 6. Let denote an extraction vector, dual to , is a length of any filler vector. Then
extraction matrix is calculated in the following way:

(7)

These matrices are sparse and have a block structure. operation is used in the encoding procedure
and is expressed with a matrices (8), while decoding neural network is built with a weight matrix
(9) representing operation.

[]
[]
[]
[]
[]

=
=
=
=
=

0

1

7 0 0 0 0 ,
0 4 0 0 0 ,
0 0 2 0 0 ,
10 0 ,
0 5 .

A
V
P
r
r

cons ex
,()cons p q p

0 q 1r

cons

,0 1r r ,p q cons

+, = ⊗ ⊗ = +
0 10 1() .cons conscons p q p r q r W p W q

0r A
0consW

= ⊗ ⊗ ,
0 01cons AW I r

I 1A ×A A
1consW

0consW
ex

0()ex p p 0r

0exW 0r 1r

0r = ,()s cons p q
0ex

= , = ,0 0() (())ex s ex cons p q p

0u 0r A

0exW

= ⊗ ⊗
0 01 .ex AW I u

cons
consW eW x

ex
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

ENCODING AND DECODING OF RECURSIVE STRUCTURES 41
(8)

(9)

Aforementioned operations , , are equivalent to operations over lists in software general-
purpose functional programming languages like Lisp: , , . These are universal operators that
allow implementation of a considerably large set of algorithms. Considering support of conditional oper-
ator, the representational power of these operators is even bigger. Therefore implementation of these oper-
ations, or equivalent , , , on the neural level opens the horizon for neural-symbolic computation
of symbolic algorithms built on top of , and .

According to (2), the tensor representation of the given sample structure should be calculated in the
following form (10).

(10)
After that, we can interpret each complex role as a tensor multiplication of corresponding basic roles

(11).

(11)

It can be easier to look at the structure from the recursion standpoint and split it into sub-trees until
there are only atomic fillers participating in the tensor sum (12).

(12)

Regardless the way the tensor representation is formulated (10), (11) or (12), it stated that the Tensor
Product Variable Binding should be performed on the sub-symbolic level. In other words, it should hap-
pen as a part of a neural network execution. Therefore, the next step would be to prepare compound roles
to be used as inputs to the neural network.

The detailed analysis given in [9, 14] shows that it is required to perform pairwise tensor multiplication
between pairs of fillers and roles and, finally, find the accumulated sum. The latteris the tensor represen-
tation of the given structure (13).

(13)

 
, 

 
 ,
 
 ,
 
 

, 
 
 ,
 
 , 
 

, 
 
 ,
 
 
 
 
 
 
 ,
 
 

, 

=

� � � �

� �

� �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � �

� � � � �

� � � �

� � � �

0

0 0

0 1

0 0

0 1

0 0

0 1

0 0

0 1

0 0

0 1

0 0 0
0 0

0 0 0

,

0 0 0

cons

r
r

r
r

r
r

W
r
r

r
r

 
, , 

 
 , ,
 
 
 
 
 
 
 
 
 , , 

=

� � � � �

� � �

� � � � � �

� � � � �

� � � �

�

0

0 0 0 1

0 0 0 1

0 0 0 1

0 0
0 0

.

0

ex

u u
u u

W

u u

cons 0ex 1ex
cons car cdr

cons 0ex 1ex
cons car cdr

ψ = ⊗ + ⊗ + ⊗0 01 11.A r V r P r

ψ = ⊗ + ⊗ ⊗ + ⊗ ⊗0 0 1 1 1.A r V r r P r r

ψ = ⊗ + ⊗ ⊗ + ⊗ ⊗ = , ,0 0 1 1 1() (()).A r V r r V r r cons A cons V P

S

 
 
 

ψ = , , = + + =  
 
 
 

0 1 0 1

70 0 0 0 0 0
0 0 0 0 0 0
0 0 0 200 0 0(()) () .
0 0 0 50 0 0
0 0 0 0 0 0

cons cons cons conscons A cons V P W A W W V W P
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

42 DEMIDOVSKIJ

Fig. 2. High-level theoretical architecture for Tensor Product Variable Binding network [37].

fφ~(2)

rρ~(2)

rρ~(1)

fφ~(1)

bφρ~
3.2. High-Level Theoretical Design of Neural Encoder

The high level design of the neural network that is capable of performing Tensor Product Variable
Binding is demonstrated on Fig. 2.

The network is supposed to have two inputs: roles and fillers, and by design, it is a single layer neural
network that consists of “sigma-pi” units.

Each sigma-pi unit has several input sites that are connected with other units in the network. Each
site performs a product of its input connections . An output of the unit is a weighted sum of prod-
ucts from each input site (14). In Tensor Product Variable Binding, weights are not used and are always
equal to 1.

(14)

This network is designed to perform the binding operation. It takes fillers and roles and propagates
their components through sigma-pi units. The accumulated values at each unit constitute the distributed
representation of the given structure. However, the same network can also be used for the unbinding oper-
ation. In particular, the network initializes each sigma pi states unit with the corresponding element from
the learned tensor representation and accepts vectors of roles as an input. The fillers vector then becomes
an output of the network, computed by propagating roles vectors through the existing tensor representa-
tion (15).

3.3. Decoding Structure from a Distributed Representation

Imagine there is already a tensor representation of the arbitrary structure. For example, after we have
encoded an input structure and performed some computations with it via the neural network, it is
expected to decode the structure from the tensor form to evaluate the quality of the result. Therefore, the
decoding mechanism is needed.

According to the Tensor Product Variable Binding, it is possible to reveal what filler plays a particular
role from the distributed representation. For example, one could consider the task, such as evaluating the

σ{ }i
σi σ{ }iI

σ σ σ σ
σ σ σ

= × = × =  ∏ ∏ ∏v 1 .i i i
i i i

w I I I
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

ENCODING AND DECODING OF RECURSIVE STRUCTURES 43
filler positioned as a left-child-of-the-right-child-of-the-root. It is suggested to identify the particular
filler from the given role that it plays in the structure.

Definition 7. Unbinding of a filler by its role in the given structure containing pairs , which
has a tensor representation is calculated in the following way:

(15)

Vectors are called unbinding vectors for roles . Those unbinding vectors are defined via the basis
dual to the basis of primitive roles (17). Each element of this dual basis is a mapping from to either 1
or 0 (16).

(16)

(17)

We assume that there is already a tensor representation and the role that the sought filler plays to solve
this task. However, it turns out that in order to find out the filler vector, there is a need to find unbinding
vectors for the basic roles vectors. Since the roles matrix is not singular and is square, it is possible to get
its inverse (18).

(18)

Finally, the unbinding procedure can be made as a matrix-vector multiplication of the extraction
matrix and the tensor representation of a structure that is f lattened as a tensor with rank one (19).

(19)

The decoded filler fully complies with the filler vectors from the original structure (3) that
means that the unbinding procedure was completed without information loss. In the next section, the
neural network architecture is covered as well as numerous implementation details.

4. RESULTS AND DISCUSSION

Even though the theoretical organization of neural network (Section 2, Fig. 2) complies with the Ten-
sor Product Variable Binding mathematical model, it is hard for practitioners to express this neural net-
work in terms of modern frameworks and neural networks architecture patterns. This section contains
novel architectures for joining and extracting neural primitives.

4.1. Tensor Product Variable Binding Network

Regarding the binding network [9], there were already attempts to design it for a sample structure.
Although the very simple structure with a single level of nesting was considered, the network can perform
the binding operation over the roles and fillers’ pairs.

For the more complex case of recursive structures, the pre-processing step takes the responsibility to
translate a structure as a sequence of joining operations (Fig. 3). operation requires two positional
arguments that stand for two structures. However, on the first iterations of encoding, there might be the
need to perform the assignment of a new role to a single tree so that there is no counterpart for the joining
procedure. In that case, the fake tensor is used, filled with zeros, and has the same rank as the counterpart
tree. It is important to note that the tensor’s rank that stands for distributed representation of a structure
is incremented after each encoding block’s execution.

ir S { , }i if r
ψ

(), = ψ ⋅ = ⋅ = ⋅ = δ =⊗  () .i unbinded i j j i j j i j ij i
j j j

f u f r u f r u f f

iu ir iU
ir RV

, == δ =  ,

1 if ,
()

0 otherwise,i j ij
i j

U r

= ⋅v v() .i iU u

−

 =  
 

. = =  . 

1

10 0
,

0 5
0 1 0

.
0 0 2

R

U R

0exW

 
 = ψ × = ψ =
 
  

0

7 0 0 0 0
0 0 0 0 0 .
0 0 0 0 0

T
decoded exA U W

decodedA

cons
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

44 DEMIDOVSKIJ

Fig. 3. operation used for encoding of a binary tree.

Variable
input no. 1

Flattened
representation
of the 1st level

Flattened
representation
of the Nth level

Flattened
representation
of the 1st level

Flattened
representation
of the Nth level

Constant
input no. 1

MatVecMul
layer

Wcons0 matrix Wcons0 matrix

Length
of distributed
representation
of the Nth level

Length
of distributed
representation
on the N+1th

level

Variable
input no. 2

Constant
input no. 2

Flatted
representation

of the N+1th level

Flatted
representation
of the 1st level

Flatted
representation
of the Nth level

Add layer

MatVecMul
layer

cons
4.2. Tensor Product Variable Extraction Network
Another result of the current research is an elaborated design of the unbinding network. It is demon-

strated on the Fig. 4. Below main aspects of the topology are considered.
4.2.1. Network inputs. The extraction block accepts two inputs: a variable input1 that is a distributed

representation of a structure with levels and a constant input that contains a matrix . The latter
input is constant as it is created in advance according to the rules defined (9) and the role selected.

4.2.2. Preparing for extraction. Tensor Representations allow encoding of symbolic structures in a dis-
tributed representation that is, by definition, a collection of tensors of different rank, where a rank value
reflects the nesting level of the structure of a binary tree as it is taken in the example above. Before passing
it to the extraction block, f lattening variable input is a simple concatenation of vectors f lattened versions
of these tensors, sorted in ascending order. An important extraction operation procedure is eliminating the
vector part that corresponds to the first level of encoded structure. It is a critical part of the decoding block
(Fig. 5). When we compare decoder and encoder in terms of design, the former does not require any cus-
tom primitive layers and consists only of built-in ones.

4.3. Performance Evaluation
The essential aspect that impacts integration of such neural primitives and Tensor Representations in

general is their scalability and the ability to work with truly arbitrary structures, for example, independent

1 From now on network description contains terminology accepted in the Keras [7] and TensorFlow [1] software frameworks.

N eW x
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

ENCODING AND DECODING OF RECURSIVE STRUCTURES 45

Fig. 4. Proposed design of the decoding network.

Flattened
structure of N levels

as a single vector

Variable
input

Decoding block

Extracted structural
elements from Mth level

as a single vector

Decoding block

Decoding block

Decoding block

Constant
WexxN, N − 1

Constant
WexxN + 1, M

Constant
Wexx

Constant
Wexx
of their recursion depth and width if trees are selected as such recursive structures. Overall performance
of encoding and decoding tasks is demonstrated in Fig. 6. To benchmark neural encoders and decoders,
two additional non-neural Tensor Representations encoding and decoding implementations were made
on the foundation of libraries such as NumPy and SciPy. NumPy2 is a highly optimized library with a
broad range of tensor manipulation primitives. SciPy3 library exposes a rich interface for multiple statis-
tics, machine learning methods, and sparse arithmetics. Therefore, there are three approaches under con-
sideration: Neural, NumPy- and SciPy-based. The neural network was implemented with the Keras
framework [7] designed for early prototyping of the neural networks. As an inference engine, the Tensor-
Flow framework was used [1]. Under the hood, the NumPy library was used to construct weight matrices
for joining and extraction procedures. Dual roles for extraction procedures are calculated with the help of
the SciPy library. Neural encoder and decoder were designed according to the architectures proposed in
this paper. The NumPy-based solution is, by definition, a straightforward implementation of Tensor
Product encoding and decoding rules that implies the creation of high-order tensors and their products.
The SciPy-based solution is fully aligned with the NumPy-based one with the only difference that instead
of dense weights matrices creation, we create sparse matrices due to block structure and high sparsity of
these tensors by definition.

To reproduce the reported results, the following hardware should be used: Intel®Core™i9-9980HK
with frequency 2.40 GHz (not fixed for experiments) and 32 Gb RAM. Libraries should be used with the
following versions: Keras—2.2.4, TensorFlow—1.15.2, NumPy—1.19.2, SciPy—1.5.2. Overall implemen-
tation is performed using the Python programming language4. The source code is available at the open-
source repository5.

The most notable aspect is the inability of neither solution to encode structures of huge depth. More
specifically, trees of depth 11 as a maximum can be encoded with Keras implementation. Depth 15 is a
limit for NumPy implementation. SciPy is capable of encoding trees of depth 20. The encoding and

2 http://www.numpy.org/.
3 https://www.scipy.org/.
4 https://www.python.org/.
5 https://github.com/demid5111/ldss-tensor-structures.
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

46 DEMIDOVSKIJ

Fig. 5. Decoding block architecture. operation used for decoding of a structure.

Variable
input

Flattened
representation
of the 1st level

Wex matrix

Length of distributed
representation of the Nth level

Length
of distributed

representation
on the N−1th

level

Constant
input

Flatted
representation
of the 2nd level

Flatted
representation
of the 2nd level

Flatted
representation
of the Nth level

Flatted
representation
of the Nth level

MatVecMul layer

Reshape layer
(1D to 3D)

Crop3D layer

Reshape layer
(3D to 1D)

ex
decoding structures’ tasks are RAM-bound and require more than 200 Gb disk space for extreme depths
of 15 and 20. Simultaneously, encoding and decoding procedures in all implementations are quite con-
suming in terms of CPU load. Therefore, the first recommendation is to construct symbolic data as a
recursive structure with a limited minimum depth while allowing trees to grow in width.

Considering the theoretical availability of unlimited RAM and disk space, there is still a software limit
of the libraries, for example, NumPy limit to create arrays with many dimensions more than 32. SciPy also
fails to work with huge multi-dimensional arrays. Keras framework does not allow to create tensors with
proto larger than 2 Gb. Keras framework does not correctly handle large arrays. Hence, the second rec-
ommendation is to design Tensor Representations logic as manipulations of always a one-dimensional
array. It requires additional research with proper striding and manipulation instead of a standard outer
product available in almost any tensor manipulation library.

The third important observation is the rapid growth of weights matrices sizes as the depth of the encod-
ing structure grows. In particular, to get the left child of a tree root with a depth of 10, the matrix with 5115 rows
and 10230 columns is required. At the same time, the matrix is extremely sparse and contains only 5115
elements. Therefore, using sparse matrixes to create and store weight matrixes is beneficial and results in
a 10230 times reduction of the required memory to store the matrix mentioned above. Since NumPy does
not provide built-in capabilities for working with sparse arithmetics, SciPy was used as an engine for
sparse TPR encoding and decoding. Sparsification experiment allows the processing of deeper structures
(Fig. 6). Therefore, the recommendation is to build TPR neural encoder and encoder using the latest spar-
sification advances in the field [22]. Sparsification can be considered a growing trend in the training of
neural networks [16, 17]. Building sparse neural networks is also available with the major update of Ten-
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

ENCODING AND DECODING OF RECURSIVE STRUCTURES 47

Fig. 6. Benchmarking encoding and decoding task across several inference engines: Keras framework with TensorFlow
backend, NumPy and SciPy libraries.

M
em

or
y

us
ed

, M
b

M
em

or
y

us
ed

, M
b

Depth of structure Depth of structure

Depth of structure Depth of structure

Encode task, peak memory usage

Keras
NumPy
SciPy

(a) Memory required to encode trees
different depth

W
al

l t
im

e,
 s

W
al

l t
im

e,
 s

Encode task, time elapsed

(b) Wall time required to encode trees
of different depth

Decode task, peak memory usage

(c) Memory required to decode trees
of different depth

Decode task, time elapsed

(d) Wall time required to decode trees
of different depth

2 3 4 5 6 7 8 9 1011 15 20
10−1

100

101

102

103

104

2 3 4 5 6 7 8 9 1011 15 20

2 3 4 5 6 7 8 9 1011 15 20
10−1

100

101

102

103

104

2 3 4 5 6 7 8 9 1011 15 20

101

102

101

102
sorFlow framework that includes support of sparse matrices6. This aspect can be considered as one of the
directions of further research and software improvement of the current approach.

5. CONCLUSIONS
To sum up, we have demonstrated the novel design of the extraction network and a generalized joining

block that can be re-used easily implemented in any modern framework, for example Keras [7], Tensor-
Flow [1] or PyTorch [31].

These neural encoding and decoding primitives demonstrated in Fig. 3 and Fig. 5 can be massively
reused for the creation of neural networks that perform symbolic manipulations. Natural and formal lan-
guage analysis is tightly coupled with building multiple structures on several levels of abstraction: syntax
parsing, semantic interpretation, phonology analysis.

Current research contains proposals on the simplified architecture of the decoding neural network that
can perform required operations in parallel and process distributed representations of the arbitrary recur-
sive structures. This neural architecture builds the integrated symbolic and sub-symbolic workflows and
can be integrated into broader linguistic frameworks advancing the language theory. When considering

6 https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

48 DEMIDOVSKIJ
proposed design as not final networks, but as re-usable blocks, then it opens a broader range of applied
tasks such as sentence voice detection [10], neural processing of syntax parse trees [12], neural implemen-
tation of integer arithmetics [15], aggregation of linguistic assessments during the decision-making pro-
cess.

The proposed design of the decoder network keeps all pros of the encoding network:
(1) scalability due to the dynamic number of roles that can be used for unbinding procedure simulta-

neously;
(2) simplicity due to well-known primitives and clear architectural decisions that can be easily imple-

mented in any modern neural framework
Finally, there is a profound demonstration of both encoding and decoding stages on the example of a

recursive structure. An existing neural Tensor Representations encoding proposal [9, 14] lacks such details
that are crucial for building robust solution on top of Tensor Product Variable Binding.

The first next step for improving the decoding network’s current design is the elimination of unbinding
vectors pre-processing. The decoding network expects unbinding vectors to be passed as an input that
implies that they are prepared in advance on the pre-processing stage. To make the pure neural computa-
tion for the full f low, it is vital to consider elaborating methods of integrating the pre-processing step into
the model. It is also crucial to analyze the network performance under load to understand how well this
network behaves for the structures with a vast amount of elements and a deep level of nesting.

According to the benchmark results, there are existing software and hardware limitations to encode and
decode trees of absolutely arbitrary depth bigger than 20. This obstacle is suggested to overcome by re-
designing encoding and decoding rules as operations over one-dimensional arrays with proper striding
and manipulation rules instead of implementing Tensor Representations logic based on the mathematical
model. Considerable advances in the maximum depth limitation can be achieved using sparse represen-
tation of the weight matrices that require less memory and enable the execution of optimized kernels
within certain hardware types. It is crucial as the matrices are not randomly sparse but have a clear block
structure demonstrated throughout the paper.

However, there is a more fundamental direction for further research. Recently proposed encoding and
demonstrated in this paper decoding model do not fully close the gap of building the bridge between con-
nectionist and symbolic levels of computations. Apart from just encoding the network in some distributed
representation and then decoding it back to the form of structure, there is a huge need to build such neural
networks capable of performing structure manipulations on the tensor level, such as rotating the tree, add-
ing new subtrees. Several papers contribute to this topic regarding building neural-symbolic decision sup-
port systems [12, 13]. It was recently proposed to use TPRs for expressing integer arithmetics [15] as a vital
part of building those systems. At the same time, there is a promising neural architecture—Neural Turing
Machine [21], [21]—that allows training neural networks capable of performing selected arithmetic oper-
ations [8]. It seems to authors to be extremely important to compare learned representations versus gen-
erated ones using the TPRs rules from the standpoint of capacity.

Bringing both connectionist and symbolic computational paradigms together is an appealing idea, and
authors share the belief that such integration is likely to provide significant advances in solving those tasks
that can not be solved solely by any of those two approaches, for example, a task of building monolithic
neural-symbolic decision support systems.

FUNDING

The reported study was funded by Russian Foundation for Basic Research, project no. 19-37-90058.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES
1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J.,

Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., et al., TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, 2015. http://tensorflow.org/.

2. Besold, T.R. and Kühnberger, K.U., Towards integrated neural—symbolic systems for human-level ai: Two re-
search programs helping to bridge the gaps, Biol. Inspired Cognit. Archit., 2015, vol. 14, pp. 97–110.
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

ENCODING AND DECODING OF RECURSIVE STRUCTURES 49
3. Blacoe, W. and Lapata, M., A comparison of vector-based representations for semantic composition, in Proc. of
the 2012 Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, Association for Computational Linguistics, 2012, pp. 546–556.

4. Browne, A. and Sun, R., Connectionist inference models, Neural Networks, 2001, vol. 14, no. 10, pp. 1331–
1355.

5. Cheng, J., Wang, Z., Wen, J.R., Yan, J., and Chen, Z., Contextual text understanding in distributional semantic
space, in Proc. of the 24th ACM Int. on Conf. on Information and Knowledge Management, ACM, 2015, pp. 133–
142.

6. Cheng, P., Zhou, B., Chen, Z., and Tan, J., The topsis method for decision making with 2-tuple linguistic in-
tuitionistic fuzzy sets, in 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control
Conference (IAEAC), IEEE, 2017, pp. 1603–1607.

7. Chollet, F. et al., Keras, 2015. https://keras.io.
8. Collier, M. and Beel, J., Implementing neural turing machines, in Int. Conf. on Artificial Neural Networks,

Springer, 2018, pp. 94–104.
9. Demidovskij, A., Implementation aspects of tensor product variable binding in connectionist systems, in Proc.

of SAI Intelligent Systems Conference, Springer, 2019, pp. 97–110.
10. Demidovskij, A., Automatic construction of tensor product variable binding neural networks for neural-sym-

bolic intelligent systems, in Proc. of 2nd Int. Conf. on Electrical, Communication and Computer Engineering,
IEEE, 2020 (not published).

11. Demidovskij, A. and Babkin, E., Developing a distributed linguistic decision making system, Business Inform.,
2019, vol. 13, no. 1.

12. Demidovskij, A. and Babkin, E., Designing a neural network primitive for conditional structural transforma-
tions, in Russian Conf. on Artificial Intelligence, Springer, 2020, pp. 117–133.

13. Demidovskij, A. and Babkin, E., Designing arithmetic neural primitive for sub-symbolic aggregation of linguis-
tic assessments, J. Phys.: Conf. Ser., 2020, vol. 1680.

14. Demidovskij, A.V., Towards automatic manipulation of arbitrary structures in connectivist paradigm with tensor
product variable binding, in Int. Conf. on Neuroinformatics, Springer, 2019, pp. 375–383.

15. Demidovskij, A.V. and Babkin, E.A., Towards designing linguistic assessments aggregation as a distributed neu-
roalgorithm, in 2020 XXIII Int. Conf. on Soft Computing and Measurements (SCM), IEEE, 2020, pp. 161–164.

16. Dettmers, T. and Zettlemoyer, L., Sparse networks from scratch: Faster training without losing performance,
arXiv preprint, 2019. arXiv:1907.04840.

17. Evci, U., Gale, T., Menick, J., Castro, P.S., and Elsen, E., Rigging the lottery: Making all tickets winners, in
Int. Conf. on Machine Learning, PMLR, 2020, pp. 2943–2952.

18. Gallant, S.I. and Okaywe, T.W., Representing objects, relations, and sequences, Neural Comput., 2013, vol. 25,
no. 8, pp. 2038–2078.

19. van Gelder, T., Distributed vs. local representation, PhD Thesis, Univ. Pittsburgh, 1999.
20. Golmohammadi, D., Neural network application for fuzzy multi-criteria decision making problems, Int. J.

Prod. Econ., 2011, vol. 131, no. 2, pp. 490–504.
21. Graves, A., Wayne, G., and Danihelka, I., Neural turing machines, 2014. arXiv:1410.5401.
22. Gray, S., Radford, A., and Kingma, D.P., Gpu kernels for block-sparse weights, 2017. arXiv:1711.09224 3.
23. Kanerva, P., Hyperdimensional computing: An introduction to computing in distributed representation with

high-dimensional random vectors, Cognit. Comput., 2009, vol. 1, no. 2, pp. 139–159.
24. Kleyko, D., Khan, S., Osipov, E., and Yong, S.P., Modality classification of medical images with distributed

representations based on cellular automata reservoir computing, in 2017 IEEE 14th Int. Symp. on Biomedical Im-
aging (ISBI 2017), IEEE, 2017, pp. 1053–1056.

25. Kleyko, D., Rahimi, A., Rachkovskij, D.A., Osipov, E., and Rabaey, J.M., Classification and recall with binary
hyperdimensional computing: Tradeoffs in choice of density and mapping characteristics, IEEE Trans. Neural
Networks Learning Systems, 2018, vol. 29, no. 12, pp. 5880–5898.

26. Le, Q. and Mikolov, T., Distributed representations of sentences and documents, in Int. Conf. on Machine
Learning, 2014, pp. 1188–1196.

27. Legendre, G., Miyata, Y., and Smolensky, P., Harmonic Grammar: A Formal Multi-Level Connectionist Theory
of Linguistic Well-Formedness, Theoretical Foundations, Citeseer, 1990.

28. Legendre, G., Miyata, Y., and Smolensky, P., Distributed recursive structure processing, Advances in Neural In-
formation Processing Systems 3 (NIPS 1990), 1991, pp. 591–597.

29. Marcus, G., The next decade in ai: four steps towards robust artificial intelligence, 2020. arXiv:2002.06177.
30. Mikolov, T., Chen, K., Corrado, G., and Dean, J., Eficient estimation of word representations in vector space,

2013. arXiv:1301.3781.
31. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and

Lerer, A., Automatic Differentiation in Pytorch, 2017.
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

50 DEMIDOVSKIJ
32. Pinkas, G., Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional
knowledge, Artif. Intell., 1995, vol. 77, no. 2, pp. 203–247.

33. Pinkas, G., Lima, P., and Cohen, S., Representing, binding, retrieving and unifying relational knowledge using
pools of neural binders, Biol. Inspired Cognit. Archit., 2013, vol. 6, pp. 87–95.

34. Rumelhart, D.E., Hinton, G.E., McClelland, J.L., et al., A general framework for parallel distributed process-
ing, Parallel Distrib. Process.: Explor. Microstruct. Cognit., 1986, vol. 1, no. 45–76, p. 26.

35. Rumelhart, D.E., McClelland, J.L., Group, P.R., et al., Parallel Distributed Processing, Vol. 1, Cambridge, MA:
MIT Press, 1987.

36. Serafini, L. and Garcez, A.d., Logic tensor networks: Deep learning and logical reasoning from data and knowl-
edge, 2016. arXiv:1606.04422.

37. Smolensky, P., Tensor product variable binding and the representation of symbolic structures in connectionist
systems, Artif. Intell., 1990, vol. 46, no. 1–2, pp. 159–216.

38. Smolensky, P. and Legendre, G., The Harmonic Mind: From Neural Computation to Optimality-Theoretic Gram-
mar (Cognitive Architecture), MIT Press, 2006, vol. 1.

39. Smolensky, P., Legendre, G., and Miyata, Y., Integrating connectionist and symbolic computation for the the-
ory of language, Curr. Sci., 1993, pp. 381–391.

40. Teso, S., Sebastiani, R., and Passerini, A., Structured learning modulo theories, Artif. Intell., 2017, vol. 244,
pp. 166–187.

41. Wang, H., Dou, D., and Lowd, D., Ontology-based deep restricted boltzmann machine, in Int. Conf. on Data-
base and Expert Systems Applications, Springer, 2016, pp. 431–445.

42. Wei, C. and Liao, H., A multigranularity linguistic group decision-making method based on hesitant 2-tuple
sets, Int. J. Intell. Syst., 2016, vol. 31, no. 6, pp. 612–634.

43. Widdows, D. and Cohen, T., Reasoning with vectors: A continuous model for fast robust inference, Logic J.
IGPL, 2014, vol. 23, no. 2, pp. 141–173.
OPTICAL MEMORY AND NEURAL NETWORKS Vol. 30 No. 1 2021

	1. INTRODUCTION
	2. BACKGROUND STUDY
	3. METHODS: TENSOR PRODUCT VARIABLE BINDING FOR A RECURSIVE STRUCTURE
	3.1. Encoding Structure in a Distributed Representation
	3.2. High-Level Theoretical Design of Neural Encoder
	3.3. Decoding Structure from a Distributed Representation

	4. RESULTS AND DISCUSSION
	4.1. Tensor Product Variable Binding Network
	4.2. Tensor Product Variable Extraction Network
	4.3. Performance Evaluation

	5. CONCLUSIONS
	REFERENCES

		2021-04-09T19:17:57+0300
	Preflight Ticket Signature

