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Abstract—We describe an oscillatory neural network designed as a system of generalized phase oscil-
lators with a central element. It is shown that a winner-take-all principle can be realized in this system
in terms of the competition of peripheral oscillators for the synchronization with a central oscillator.
Several examples illustrate how this network can be used for the simulation of various cognitive func-
tions: consecutive selection of objects in the image, visual search, and multiple object tracking.
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1. INTRODUCTION
Many experimental works provide evidence that cognitive functions are related with oscillatory neural

activity and its synchronization. These functions include perception, feature binding, memory storage and
retrieval, and various forms of attention. The question that has no commonly accepted answer is whether
the synchronization appears due to the self-organization of neural assemblies or there is a special source
of synchronization that governs cognitive processes in the brain. The theory proposed by Cowan and Bad-
deley states that there is a central executive of the attention system that is responsible for the segmentation
of individual objects, focusing attention on a particular object, and keeping this object in the working
memory [1–3]. The central executive is assumed to be a complex network in the forebrain at the top of the
pyramid of cortical convergent zones. The mechanism of interaction between the central executive and
information processing regions is presumably based on phase locking [4]. This mechanism found an indi-
rect experimental support in the paper [5].

Our aim is to present arguments in favor of this theory in the form of mathematical models of various
cognitive functions based on synchronization in an oscillatory system with a central element. As a starting
point, let us consider Kuramoto phase oscillators [6] which are conventional instruments for modeling
oscillatory systems in physics, chemistry, and biology [7, 8]. These oscillators are described by a single
variable, the oscillation phase. Natural frequencies and connection strengths are the parameters of Kura-
moto phase oscillator networks. These networks are suitable for the study of synchronization conditions,
but they cannot be useful if the resonant increase in the amplitude of oscillations induced by synchroni-
zation takes place. To expand the capabilities of phase oscillators and better adapt them for modeling in
neurobiology, we introduced generalized phase oscillators [9]. These oscillators differ from traditional
Kuramoto oscillators in that a number of oscillator parameters are transformed into dynamical variables.
The advantage of generalized phase oscillators is that they allow the implementation of the winner-take-
all (WTA) procedure, which is one of the basic principles in neural network modeling. With this principle,
we developed a number of models of brain cognitive functions which reproduce data from neurophysio-
logical and psychophysical experiments.

The paper presents a review of our models of brain cognitive functions that are based on generalized
phase oscillators. These models were published before as separate examples of representing particular cog-
nitive functions by oscillatory neural networks. Now we collect them together to demonstrate the power
of the approach and a broad range of its potential applications.

In Section 2, we will describe a network of generalized phase oscillators with a central element. In Sec-
tion 3, a number of oscillatory models of cognitive functions based on networks of generalized phase oscil-
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Fig. 1. Architecture of connections in a network of generalized phase oscillators with a central element. Red arrows show
synchronizing connections, green arrows show desynchronizing connections (color online).
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lators will be considered. In Section 4, we discuss general questions about the role of dynamic models in
understanding cognitive functions, the limitations associated with using abstract models, and the ways to
overcome these limitations.

2. GENERALIZED PHASE OSCILLATORS

Systems that implement the WTA procedure are traditionally built from artificial neurons that compete
for maximizing their activity using lateral or recurrent inhibition. We suggest an alternative approach that
is based on synchronization in a network of generalized phase oscillators with the radial architecture of
connections. In such a network, there is a central oscillator (CO) and a set of peripheral oscillators (POs).
The CO interacts with the POs via feedforward and feedback connections. A PO that wins a competition
for the synchronization with the CO, resonantly increases its activity to a high level, while the activity of
the “losing” POs is suppressed to a low level.

The dynamics of a system of generalized phase oscillators are described by the following equations:

(1)

(2)

(3)

(4)

where , ,  are variables, , b < 0 are parame-
ters. Without loss of generality, we can assume that b = –1. Thus, a PO tries to synchronize the CO, while
the CO tries to desynchronize all POs. The connection strength ai > 0 is associated with the amplitude of
the ith PO.

The architecture of connections in the system is schematically shown in Fig. 1.
It is assumed that the functions f, g, h are 2π-periodic and satisfy the following condition:

Periodicity and oddness of the functions f and g imply the conditions

It is assumed that these functions have no other zeros.
The function h(x) monotonically increases on [–π, 0] (and, respectively, monotonically decreases on

[0, π]).
Examples of f and h that were used in simulations are shown in Fig. 2. In all simulations g(x) = sin(x).
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Fig. 2. Types of functions in equations (1)–(4): (а) interaction functions f(x) for different values of the parameter ν that
determines the position of extrema of the function; (b) resonance controlling functions h(x) for different values of the
parameters μ and σ that determine the width of the region where h(x) is not equal to zero and the rate of decrease of h(x)
when the argument deviates from 0 (color online).
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Equations (1)–(4) can be considered as a generalization of standard Kuramoto equations for phase
oscillators. This generalization is obtained by adding to phase equations (1)–(2) equation (3) for adapta-
tion of the natural frequency of the CO and equation (4) for adaptation of the amplitudes of POs.

The meaning of equation (3) becomes clear if it is rewritten in the form

According to this equation, the natural frequency of the CO is adapted in the direction of its current
frequency. The parameter α determines the adaptation rate.

Equation (4) describes the resonant increase of the amplitude of oscillations of the ith PO to the level
c + γ, if this PO is synchronous with the CO; otherwise, the amplitude of this PO falls down the low level
c. The parameter β determines the adaptation rate.

Under a suitable choice of parameters and functions, system (1)–(4) can work in the WTA regime
when at most one PO wins the competition for the synchronization with the CO and increases its ampli-
tude to the resonant level [9] (Fig. 3). Depending on the relationship between the desynchronizing
strength b and the divergence of the natural frequencies of POs, the WTA regime can be stationary or non-
stationary. Different types of dynamics in the WTA regime are shown in Fig. 4 for the case of 3 POs.

3. OSCILLATORY NEURAL MODELS OF COGNITIVE FUNCTIONS
3.1. Consecutive Selection of Objects in the Image

When processing visual scenes, it is usually assumed that individual objects that are located in the scene
are fed to the recognition system one by one in a certain sequence. However, biological visual systems have
to work under conditions when visual scenes simultaneously contain several objects. To reduce the
amount of information that must be processed at each moment of time, animals use two cognitive mech-
anisms: attention and feature binding. Feature binding allows for the separation of features of different
objects that are simultaneously present in the visual scene; attention restricts information processing by
the features of a single object that is currently selected into the attention focus. The attention system
amplifies the activity of neurons that code an attended object and inhibits the activity of neurons that code
unattended objects.

Our model of consecutive selection of objects in the attention focus is based on system (1)–(4) with the
addition of local connections between POs [10]. The POs are located on the plane in the nodes of a square
lattice. Each PO codes the information from a pixel of the image (Fig. 5). Thus, there is one-to-one cor-
respondence between the pixels in the image and the POs.
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Fig. 3. Dynamics of the amplitudes of 10 POs in the WTA regime. The first PO is in the resonant state (its amplitude
becomes higher than a threshold level Hhigh). The other 9 POs work with a low amplitude (it is below a threshold level
Hlow) (color online).
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Fig. 4. The dynamics of phase differences between 3 POs and the CO in the WTA regime. The first PO is the winner:
(a) stationary state, all POs are phase-locked by the CO, one is the winner, the other two are nearly in antiphase to the
CO; (b) two POs are phase locked by the CO (one inphase, the other one in nearly antiphase), the phase difference of the
third PO runs in negative direction; (c) the winner is inphase with the CO, the phase differences of the other two POs run
in negative direction; (d) the winner is inphase with the CO, the phase differences of the other two POs run in opposite
direction to each other [9] (color online).
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Synchronizing local connections between POs are used to group the pixel belonging to a particular
object. They lead to the formation of synchronous assemblies of POs that represent individual objects
according to their spatial connectivity.

Attention is implemented in the model as a result of synchronization of the CO with an assembly of
POs. It is assumed that the focus of attention is formed by those POs that work synchronously with the
CO. Due to the resonance, the amplitudes of POs in the focus of attention increase, while the amplitudes
of other POs decrease to a low level. There is a special procedure incorporated in the model that prevents
repeated selection of the same object. For this purpose, the oscillators that went through the resonant state
OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 28  No. 3  2019
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Fig. 5. A scheme for modeling consecutive selection of objects. Objects are coded by assemblies of locally connected oscil-
lators. The selection of a particular object in the attention focus is realized by the WTA procedure in a system of general-
ized phase oscillators with a central element. Gray arrow shows assigning values to the natural frequencies of POs. Black
filled arrow shows synchronizing connections that are used for object representation by a synchronous assembly of POs
and for synchronization of the CO with an assembly of POs. Black hollow arrow shows desynchronizing connections that
are used to prevent simultaneous synchronization of the CO with several assemblies of POs.
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Fig. 6. Dynamics of PO’s amplitudes when the letters of the word HELLO are consecutively selected in the attention
focus [10] (color online).
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loose the possibility to resonate for some time that is sufficient for examination of the whole image. This
leads to the selection of different objects in the focus of attention.

Figure 6 illustrates the principles of model performance using a simple example of a black-and-white
image with the word “HELLO” that consists of 5 letters (objects). The letters were selected in a random
order.

3.2. Visual Search

Visual search is a type of perceptual task that involves an active scan of the visual environment for a
particular object (the target) surrounded by other objects (the distractors) [11]. The task of visual search
can be of various complexities depending on the saliency of the target relative to the distractors. This is
reflected in the duration of time that the observer spends performing the search task, and in the number
of errors that are made.
OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 28  No. 3  2019
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Fig. 7. Visual search: (а) examples of visual search tasks of different complexity; (b) mean reaction times for these tasks
[13]). Solid (dash) lines correspond to the case when the image contains (does not contain) a target object (color online).
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A vast amount of experimental evidence has been obtained to characterize the mechanisms of visual
selection. In the early experiments of [12] it was discovered that visual search tasks can be subdivided into
several categories based on their difficulty. Though later experiments have shown that there are no strict
barriers between the categories, the following three categories are considered as basic experimental para-
digms [13]:

Feature Search is the case where the target and the distractors are maximally different, i.e. differenti-
ated by a single property, such as colour, shape, orientation, or size. In this case, the reaction time (RT) is
found to be short and independent of the number of objects n in the display (i.e. the graph RT(n) is nearly
parallel to the n-axis).

Conjunction Search occurs when the target shares a property with the distractors, e.g. a red vertical bar
should be found among vertical green bars and horizontal red bars. In this case, the search task is more
difficult and RT(n) increases when n increases.

Spatial Configuration Search is even more difficult. An example of such task is the search of the number 2
among numbers 5 (2 is a reflection of 5 relative to the vertical mirror). In this case, the graph RT(n) is
steeper than in the case of Conjunction Search.

Figure 7a gives some examples of visual search tasks. Figure 7b shows the graphs of average reaction
times RT(n) for these tasks as a function of the number of objects in the scene.

Recently there appeared a model [14] that is able to reproduce not only average RTs in visual search
tasks, but also time distributions [15]. The model does not suggest a neural mechanism for its implemen-
tation. It only assumes that the process of selection consists of several selection rounds, which continue
until a target is selected or the conditions for search termination are fulfilled. The model was applied to
the tasks which differed by the weights assigned to the target and distractors according to their saliency. In
Feature Search due to high saliency of the target, the weight of the target is radically greater than the
weights of distractors. Purely mathematically, this leads to a f lat slope of the RT as a function of n. In Spa-
tial Configuration Search the weight of the target is only slightly higher than the weight of distractors,
which leads to a steep slope of RT(n). Conjunction Search occupies an intermediate position between
these two extreme cases.

Our model follows the same logic as the model [14], but it aims to suggest a simple neural mechanism
that may underlie the probabilistic selection of objects. We model visual search by the WTA procedure in
system (1)–(4) of generalized phase oscillators [16]. Each visual object is represented by a PO. The
saliency of an object is described by an initial value of the amplitude of the corresponding PO: objects that
are more salient have a higher value of the initial amplitude.

The model combines parallel and sequential mechanisms of information processing. The former are
used to select an object in the attention focus, the latter are used for a limited item-by-item examination
of selected objects to check whether the selected object is a target or a distractor. If it is a distractor, then
a new attempt (that is a new run of the model) is made, and so on until the target is selected.

Figure 8a shows the probabilities rn that a target object will be selected in the attention focus during a
single run of the model. The values of rn decrease when the number of objects n increases.

With a fixed initial amplitude of “distractor” POs, the values of rn become smaller as the initial value
of the amplitude of the “target” PO decreases. In terms of the model, this means that the probability of
selecting a target object in the focus of attention decreases if the target object becomes less salient among
distractors.
OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 28  No. 3  2019
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Fig. 8. Simulation results for visual search: (a) probabilities rn as functions of n; (b) average number of attempts  needed
to select a target with return; (c) average number of attempts , needed to select a target without return. Parameters:
ai(0)= 1, i = 2, …, n. In all panels the numeration of lines corresponds to the following values of a1(0): (1) a1(0) = 12, (2)
a1(0) = 8, (3) a1(0) = 6, (4) a1(0) = 4, (5) a1(0) = 3. Straight line in (b) and (c) are linear regression lines [16] (color
online).
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The parameter rn is hidden, it is impossible to determine it in a psychophysical experiment. However,
we can use rn to compute the average number of attempts (runs of the model) M, that are needed to select
a target object.

Since there is no common opinion among researchers whether repeated selections are made with or
without inhibition of return, we consider both possibilities. Denote the average number of selection
attempts in the cases when the return is allowed or is not allowed as  and , respectively.

The results of computations of  and  shown in Fig. 6b,c properly correspond to experimental evi-
dence on RTs in visual search tasks of different complexity (compare with Fig. 7).

The lines labelled 1 and 2 in Fig. 8b,c are nearly horizontal, therefore one can think that they corre-
spond to Feature Search. Lines 3–4 in Figs. 8b, 8c correspond to cases of Conjunction Search. The lines
labelled 5 correspond to the most difficult type of tasks: Spatial Configuration Search. Note that the
search with inhibition of return is only slightly faster than the search without such inhibition. This explains
why it is so difficult to experimentally distinguish between these two types of search.

The simulations show that the dependences RT(n) from n are properly approximated by linear func-
tions which is in agreement with experimental data [15]. This was not planned in advance and confirmed
that the model correctly ref lects the neural mechanisms that underlie the work of selective attention in
visual search.

3.3. Multiple Object Tracking

An important experimental paradigm that is used in the study of object-oriented attention is multiple
object tracking (MOT). In a standard MOT experiment [17, 18] an observer views a display with m simple
identical objects (up to 10 objects, such as points, or plus signs, or circles, etc.) (Fig. 9). A certain subset
of the objects (from 1 to m/2, m is supposed to be even) is briefly f lashed to mark them as targets. Other
objects are considered as distractors. Then all objects begin moving independently and unpredictably
about the screen without passing too near to each other and without moving off the display. The observer’s
task is to track the targets with the eyes fixed at the center of the screen. At various times during animation
one of the objects is f lashed and the observer should press a key to indicate whether this object is a target
or a distractor.

It has been shown that trained subjects are quite efficient in performing MOT. Though the number of
errors increases with the increased number of targets, even for 5 targets the performance level was about
85% correct target identifications.

The architecture of the MOT model is shown in Fig. 10a for the case of 3 targets. In a general case, the
number of layers is equal to the number of targets. The layers represent the modules of the attention system
[20]. It is assumed that each module tracks a single target. The interaction between the modules is orga-
nized so that different modules are not able to track the same object.

1
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Fig. 9. Multiple object tracking. Targets are f lashed before moving. The observer must identify the targets using a com-
puter mouse [19].

Fig. 10. Model of MOT: (а) architecture of the model; (b) probability of errors in the model [20] and in experiments [21]
(color online).

(а)
Layer 3

Layer 2

Layer 1

CO 3

CO 1

CO 2

Synchronizing
connection

Desynchronizing
connection

(b)

The number of target objects

Pr
ob

ab
ili

ty
 o

f e
rr

or
s Model

Experiment

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35
If objects move along the visual field slowly enough and do not intersect in the process of movements,
the focus of attention (after it is formed) remains fairly stable due to the resonance of the POs included in
the focus of attention. A resonant PO has a much stronger effect on the CO in its layer than other POs,
and this prevents attention switching from one object to another. However, if the speed of moving objects
becomes relatively high in comparison with the rate of synchronization and resonance, attention can
spontaneously switch from one object to another. This leads to errors in the identification of target objects
and distractors.

To estimate the quality of model performance, we performed 50 runs of the model for each of the val-
ues k = 2, 3, 4, 5, where k is the number of target objects. The results of the simulations are presented in
Fig. 10b together with experimental data. The model gives a fairly good approximation of the experimental
data. Significant deviation occurs in the case of two targets. This is probably due to the fact that the model
parameters were fixed for all cases of tracking, while in reality adjustment of parameters depending on the
number of objects in the image cannot be excluded.

The dependence of the number of errors in MOT on the number of targets was the reason for the
researchers to associate MOT with resource-limited parallel processing [17]. Our model presents an alter-
native explanation of this phenomenon. Though the processing of information in our model is purely par-
allel, it is evident that the quality of both object selection as targets and tracking of the targets will be
poorer if the number of targets increases. This is caused by the limited capacity of the phase space where
several central oscillators have to operate simultaneously. Increasing the number of central oscillators will
make it more and more difficult for them to avoid temporal synchronization, which may result in unpre-
dictable jumps of attention to non-target objects.

Designing a MOT model, we intentionally tried to avoid the use of traditional image processing tech-
niques, such as shape analysis, connectivity testing, pattern recognition, etc. Therefore the model can
work equally well in the case when objects in the visual field are not identical or even vary in shape. This
OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 28  No. 3  2019
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is important, e.g., if object movements take place in 3-D space with the projection of objects on the retina
constantly changing.

4. CONCLUSIONS
In this research we were interested in the relationship between cognitive functions and brain dynamics.

This question is important, since many existing models ignore dynamical aspects of brain functioning
and, nevertheless, at the functional level obtain quite satisfactory results, sometimes even surpassing the
capabilities of natural intelligence. On the other hand, experimental data show that a quick change of brain
activity is necessary for f lexible adaptation of the brain to different tasks. How does the brain use its
dynamic modes? Are there general principles in the architectures that these modes support, and in the
mechanisms that these modes implement? What types of information processing can be explained and
reproduced on the basis of oscillatory activity and its synchronization? These questions stimulate many
studies where dynamical systems are applied to modeling brain functions (see, e.g., reviews [22, 23]).
Without giving exhaustive answers to these questions, our models provide sufficient arguments to assert
that the synchronization of neural activity underlies a wide range of cognitive functions. Phase oscillators
that are used as basic instruments in our modeling can be conveniently realized as optical devices, so the
models may be helpful for optical implementation of artificial intelligence in the future.

Mathematically, a reduction of a system of limit cycle oscillators to a system of Kuramoto phase oscil-
lators can be correctly induced if only the interaction between oscillators is weak [24]. This assumption is
not fulfilled in our models. As for generalized phase oscillators, there is no strict mathematical justifica-
tion of their use in neurophysiological modeling. The only argument in favor of our approach is that it
gives correct reproduction of experimental data based on uniform principles of the temporal correlation
theory [25]. Further advancement will require a more detailed description of oscillatory processes, taking
into account real frequency and phase relations, as well as the interaction of various types of oscillations
in different frequency ranges. Some steps in this direction have been taken [26], but the question of how
well phase models can be adequately reproduced at a detailed level of Hodgkin–Huxley neurons remains
open.

Here lies the limit of applicability of the developed models and methods. Our models are suitable for
solving general questions about the role of oscillations and synchronization for various cognitive func-
tions; however, they describe in a very general form both morphological and neurophysiological charac-
teristics associated with brain structures when cognitive functions are performed. Reductionism and
extreme simplification were inevitable for the initial steps of understanding the mechanisms of cognitive
functions.

The presence of hubs in neural networks is well known from the studies of anatomical and functional
connections. However, this fact is rarely taken into account due to traditional ideas about the distributed
representation of information in the brain. Also there is a desire to restrict oneself to well-developed meth-
ods of statistical physics, which are most easily applied to homogeneous neural network architectures. As
can be seen from our models, networks with hubs are a natural approach to the implementation of the
WTA procedure, especially if this procedure is implemented on the principles of synchronization.
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