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INTRODUCTION

During the operation, the properties of aircraft may change in unpredictable ways. This fact ought to
be considered when developing models used as the parts of the aircraft onboard systems. One of the pos�
sibilities to solve this problem is to develop models possessing the adaptivity.

In particular, we can obtain the required adaptive model using the semi�empirical approach proposed
in [1] that allows us to combine the theoretical knowledge of the object with an improving of the model
basing on the experimental data. This method provides a substantial increase of the accuracy of the solu�
tion comparing with the traditional purely empirical models such as the nonlinear autoregression exoge�
nous model (NARX). At this theoretical knowledge is presented in the form of the differential equation
systems, and the methods allow one to improve the model, using the methods of the theory of artificial
neural networks (ANN). In [2] we discussed the problems of working out of the control actions providing
the adequate mapping of specific features of the simulated system in the training set.

The learning of the semi�empirical neural network model is not a simple problem, because of its spec�
ificity as a dynamical neural network. In the following sections, we present the special procedure of the
network learning to produce the multi�step forecast. We illustrate the efficiency of the proposed approach
by the results of our computer simulations.

FORMATION OF SEMI�EMPIRICAL MODEL OF ANGULAR MOTION

To estimate the efficiency of the proposed approach, let us consider the problem of simulating the air�
craft three�axis rotational motion. We describe it by a typical set of equations for aircraft flight dynamics
[3]. This set consists of fourteen differential equations, which we do not present here because of it being
too complicated. The state variables of the dynamic system are the roll angular rate p, the pitch angular
rate q and the yaw angular rate r (degree/second); the roll angle Φ, the yaw angle Ψ and the pitch angle Θ
(degree); the angle of attack α, the angle of sideslip β; the angle of the all�moving tailplane deflection δe,
the angle of the rudder deflection δr, the angle of the aileron deflection δa (degree); the angular rates of the

all�moving tailplane, the rudder and the aileron deflections    (degree/second), respectively. The

control inputs are the quantities    that are command driving signals supplied to the all�moving
tailplane, the rudder and the aileron (degrees), respectively.

The given theoretical model contains six unknown nonlinear functions of several variables. These
functions describe the dependences on the state variables of the coefficients of the axial Cx(α, β, δe, q), the
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Fig. 1. The semi�empirical neural network model of the aircraft longitudinal rotational motion (based on the Euler dif�
ference scheme); the shaded elements of the scheme with the related connections are included into the neural network
modules that provide the functions Cz and Cm that have to be reconstructed.

transverse Cy(α, β, δr, δa, p, r) and the normal Cz(α, β, δe, q) of the aerodynamic forces, respectively. They
also define aerodynamic moments Cl(α, β, δe, δr, δa, p, r), Cm(α, β, δe, q) and Cn(α, β, δe, δr, δa, p, r) of
the roll, the pitch and the yaw, respectively. To implement these functions we include in the developing
model six neural network modules in the form of the sigmoid feedforward neural networks with one hid�
den layer. The hidden layers include 1, 5, 3, 5, 10 and 5 neurons for the modules Cx, Cy, Cz, Cl, Cm and Cn,
respectively. In the concerned case of the three�axis rotational motion, it is not possible to present the
block diagram of the model since it is too cumbersome. To give the reader an idea of its specific features
in Fig. 1 we show the structure of the semi�empirical neural network model for the special case of the lon�
gitudinal rotational motion that includes the modules Cz and Cm only [2]. This is the condensed version of
the full model. The analogous scheme for the case of the completely empirical model (NARX) of the lon�
gitudinal angular motion is shown in Fig. 2. In Figs. 1 and 2 the darkened circles show neurons with
adjustable connection weights.

Note, since in the model there are no controls acting on the acceleration/ braking along the longitu�
dinal axis of the aircraft, it is not possible to obtain the training set for the neural network module repre�
senting the drag coefficient Cx. This is the reason why we form the neural network module for Cx indepen�
dently basing on the data from [4]. We embed it into the generated semi�empirical model. We “freeze” this
module, that is, we disable variations of its adjustable parameters.

FORMATION OF REPRESENTATIVE TRAINING SET

When synthesising the neural network models one of the critically important problems is the formation
of a representative data set characterizing the behaviour of the simulated dynamic system. Unfortunately,
this problem has no simple solution, but it is crucial for obtaining a reliable model of the dynamic system.

In paper [2] we showed that as applied to the class of problems we consider, the most effective way is to
use the polyharmonic (multisine) actuating signal. Under this approach for each of m aircraft controls the
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input actions are formed as the sum of harmonic signals each of which has its own phase difference ϕk.
The input signal uj corresponding to the j�th control surface has the form:

where M is the total number of harmonically connected frequencies, T is the interval of time during which
the test actuating signal acts upon the dynamic system; Ak is the k�th amplitude of the sinusoidal compo�

nent;  is the complete controlling action for the j�th control surface;  is the controlling action for
the j�th control surface realizing the test maneuver.

When generating the training set as well as when testing the obtained semi�empirical neural network
model the controlling actions affected the aircraft over all three channels simultaneously and at that the

signals    were formed as the polyharmonic ones when obtaining the training set and as random
ones when testing the learned model.

COMPUTER SIMULATIONS

In our computer simulations using the theoretical model, the interval of time was t ∈ [0, 20] seconds
when obtaining data for the ANN�model learning, and it was t ∈ [0, 40] seconds when testing the obtained
neural network model. In both cases simulations were performed with the time step of Δt = 0.02 s for the
partially observable state vector y(t) = [α(t); β(t); p(t); q(t); r(t)]T. The additive white noise with the stan�
dard deviations σα = σβ = 0.02 deg and σp = 0.1 deg/s, σq = σr = 0.05 deg/s affected the system output
y(t). If the neural network model reproduces the original system perfectly well, the noise affecting the sys�
tem output defines the error of simulation completely. Consequently, comparison of the error of simula�
tion with the standard deviation of the noise allows us to judge how well our simulations were. The stan�
dard deviation of the noise can be regarded as the target error of the simulations.

The learning was carried out basing on the sample (training set) {yi}, i = 1, …, N, obtained for the initial
theoretical model with the aid of the Matlab system using the Levenberg–Marquardt algorithm and the
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Fig. 2. The empirical model of the neural network for the aircraft longitudinal rotational motion (NARX).
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root mean�square error (RMSE) criterion. The Jacobian matrix we calculated according the RTRL
(Real�Time Recurrent Learning) algorithm [5].

PROCEDURE OF THE SEMI�EMPIRICAL MODEL LEARNING

In paper [6] it was shown that in the presence of the additive noise affecting the observable outputs of
the dynamic system, in theory the recurrent neural network is the optimal model. However, the process of
learning of such networks basing on long input sequences causes some difficulties. They are the existence
of spurious valleys on the error surface [7], the effects of the exponential decrease or increase of the gra�
dient norm [8], the possible unrestricted increase of the network outputs. That is the reason why using the
gradient optimization methods one can obtain the global minimum only for a small set of the initial values
for parameters of the network. If we pass on to the problem of finding of the initial network parameters
whose values are close enough to the minimum, it may be assumed that this problem is very close to the
previous one. That is, we need to find such a sequence of problems where the first one is simple enough
and we can solve it for any initial values of the network parameters; each subsequent problem has to be
similar to the previous one and their solutions have to be close in the space of the parameters values. The
sequence of the problems converges to the initial problem we have to solve.

When learning stepwise the network using a sequence of the abovementioned problems, there is a
chance to reach a rather deep minimum. Similar approaches were previously discussed in [9–12]. As a
rule, the authors suggested to learn the network on the sequences of problems of increasing complexity.
(However, it is not seemed to be a must). Generally, using of these approaches leads to a substantial
improvement of the learning results. In the given case of the multistep forecast problems, it is natural to
suggest the following sequence of the problems. The first one is the problem of the one�step forecast; next
one is the problem of the two�step forecast and so on. The last one is the problem of the N�step forecast. 

It is evident that the first problem is the simplest one. Moreover, when solving this problem the recur�
rent network is learned as an ordinary feedforward neural network. The problem of the N�step forecast is
the most complex one since the longest sequence is used when learning the network. So, the objective
function for the k�step forecast problem has the form:

where xi is the vector of the state variables at discrete instants of time i; ui is the vector of the control vari�
ables at discrete instants of time i; w is the vector of the adjustable parameters of the neural network model.
The procedure of learning the neural network model is presented in Table 1.

Let us discuss a demonstration learning problem of the recurrent network with two neurons and one
configurable parameter. This is a semi�empirical model of the following dynamic system 

(1)

The vector of the state variables is partially observable: yi = x2, i. The additive white noise with the standard
deviation σ = 0.001 affects the system output. The training set is generated by the system (1) for the value
of the parameter w = 0.5 for the steps i = 1, …, 200 and 21 input values x2, 1 uniformly distributed at the
interval [–1; 1]. We use the normal random sequence as the control signal ui. In Fig. 3 we show the error
surface of this neural network for the 199�step forecast problem. We also denote the initial value of the
parameter w and the local minimum achieved with the aid of the gradient descent. In Fig. 4 we in turns
show the error surfaces of the sequence of problems of the multistep forecast as well as the relative mini�
mums reached with the aid of the same gradient descent for the same initial value w. We see that our
approach ensures the possibility to reach the global minimum of the original problem. It also should be
noted that in real�world multidimensional problems the possibility to find the global minimum is even
more crucial and the advantages of the sequential learning are more important. We used this algorithm
successfully when solving the stated problem of identification of aerodynamic coefficients for the
1000�step forecast. The obtained results are given in Table 2 and in Fig. 5. From the analysis of the results
of our simulations, we conclude the following.

The most important characteristic of the generated model is its ability to generalize. For the neural net�
work models that usually means the ability of the model to ensure the desired accuracy not only for the
data used for the model learning, but also for any values and combinations of the control and state vari�
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Table 1. Learning algorithm of the neural network model

Step Operation

1 To prepare the training set  and the validation set  

to choose target accuracy εgoal

2 To choose the maximal permissible value of the error increase Δmax

3 To choose at the training set the maximal permissible value of the number of stages with the error increase smax

4 To choose initial values w0 of the network parameters (for example, the random ones)

5 At the validation set to define the running value of epochs with the error increase s ← 0 
and the running value of the forecast steps k ← 1 

6 To solve the optimization problem  

7 To return to the step 4 if 

8 To calculate the error of the (n–1)�step forecast at the validation set 

9 To set a new value of the forecast’s steps k+ 
← k

10 To continue setting the new values of the forecast’s steps k+ 
← k+ + 1 till k+ 

≤ n – 1 and 

11 To return to the step 4 if k+ = k

12 To solve the optimization problem  

13 To set k+ 
← k+ – 1 and to return to the step 11 if 

14 To calculate the error of the (n–1)�step forecast  at the validation set

15 To set s ← s + 1 if 

16 To return to the step 4 if s ≥ smax

17 If k+ < n – 1, to set k ← k+ and to return to the step 9 or finish otherwise; wn – 1 are the neural network param�
eters we are looking for
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Table 2. Simulation errors at the test set for semi�empirical model at different learning stages

Number of steps 
of the forecast RMSEα RMSEβ RMSEp RMSEq RMSEr

2 0.1376 0.2100 1.5238 0.4517 0.4523

4 0.1550 0.0870 0.5673 0.4069 0.2738

6 0.1647 0.0663 0.4270 0.3973 0.2021

9 0.1316 0.0183 0.1751 0.2931 0.0530

14 0.0533 0.0109 0.1366 0.1116 0.0300

21 0.0171 0.0080 0.0972 0.0399 0.0193

1000 0.0171 0.0080 0.0972 0.0399 0.0193
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Fig. 3. The plot is the error surface for the demonstration problem, the circle is the initial value of the parameter, the
square is the achieved local minimum. 
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Fig. 4. The dashed, dotted, dash�and�dot and solid lines are the error surfaces for the forecast problem with 2, 7, 148 and
199 steps respectively. The circle is the initial parameter value, and the rhombus, square, triangle and star are the achieved
minimums. 
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Fig. 5. The estimate of the generalization ability of the neural network model after completing of the 1000�step of the
learning process: Eα, Eβ, Ep, Eq, Er are the measures of inaccuracy of the corresponding observed values; the horizontal
lines show the values of the controls corresponding to the test maneuver (the absolute altitude is h = 300 m, the air speed
is VP = 148 m/s). 
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ables inside their definition domains. One does the relevant verification on the test data covering the
abovementioned definition domain and not coinciding with the training data.

From Fig. 5 we see that the errors for all the observable state variables are sufficiently small. Moreover,
these errors do not increase with time and this is the evidence of good generalization ability of the obtained
neural network model. It must be emphasized that to ensure a great variety of the modeled system states
as well as to ensure the largest possible variety of the differences between states at the adjacent instants of
time, when testing the model we simulated very active work of the aircraft controls. An additional compli�
cating factor was in providing the subsequent input disturbance affected the aircraft before the transition
processes from one or several preceding disturbances were finished. 

Fig. 5 corresponds to the model for which the learning cycle described above has been completed. The
changes of the model accuracy in the intermediate points can be judged by the data in Table 2. One is also
interested in the accuracy of solution when identifying the aerodynamic characteristics. We can estimate
it comparing the values generated by the relevant neural network modules with experimental data in hand
[4]. The values of the root mean�square errors (RMSE) of the reconstruction of each function provided

by the corresponding neural network modules are  

   At that, the error level does
not change significantly with time. We did not find the fluctuations of the error that can influence nega�
tively the adequacy of our semi�empirical neural network model.

CONCLUSIONS

The obtained results show that the methods of the neural network simulations combined with the
knowledge and experience in the object domain, as well as with the representative training set are powerful
tool for solving complicated problems for controlled dynamic systems of different kinds. The procedure
based on using the sequence of the problems of increasing complexity proves to be a good learning tool for
such models to provide the multistep forecast.
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