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1. INTRODUCTION

In recent years there has been growing interest in spiking neural networks (SNN). On the one hand,
this was caused by progress in experimental techniques in vitro which allowed to investigate the neuronal
culture on the microelectrode array and on the other hand, it was induced by achievements in developing
of SNN simulators. However, the learning methods of SNN remain semi�developed, making the study of
such techniques actual problem.

Bioinspired models of SNN are considered as the new generation of neural networks relatively to for�
mal models of neural networks with static elements [1]. Neurons and synapses of SNN are dynamic
objects, and their properties depend on time. Information richness of biosimilar neurons and synapses
with synaptic plasticity potentially increases associative abilities of SNN.

Special interest are the attempts to use spiking neural networks with learning methods to solve practical
problems: extraction of temporally correlated features from vision sensors [2], monophonic sound source
separation [3], image clustering [4] and other similar problems. However, question which remains open is
developing of effective learning algorithms of SNN in complex model including neuron model, synapse
model, spike�timing�dependent plasticity model, and assumption of form of input signal. A set of above
mentioned models should be formed for answer to this question and parameters of these models should be
evaluated.

The two simulators are applied: NEST (NEural Simulation Tool), CSIM(A neural Circuit SIMulator)
for investigations of the influence on the learning performance following factors: three types of spike trains
signals (Poisson (the number of spike in time interval has a Poisson distribution), normal (signal has a nor�
mal distribution of interspike interval), uniform (signal has a uniform distribution of interspike interval)),
spike�timing�dependent plasticity (STDP), form of postsynaptic current, spike pairing scheme in STDP.
The experiments of learning the SNN with denoted above parameters were performed and most suitable
for learning approaches were presented.

2. MATERIALS AND METHODS

The three components of SNN may be determined: neuron, synapse, learning approach STDP.
The equation of membrane potential dynamics of leaky integrate�and�fire neuron has view (1):

 (1)

where v, Cm are membrane potential, capacitance. When v achieves threshold vth, neuron fires a spike and
during the refractory period τref after spike, value of membrane potential has constant value vreset. Without
synaptic currents, the membrane potential relaxes to the resting potential vresting with specific time τm.
Isyn(t) is synaptic current. Ie is background constant stimulation current.
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Values of parameters of neuron model were presented in Table 1.

Synapse model expressed by the Eqs. (5), (6) of the synaptic current Isyn(t), which is involved in neuron
Eq. (1). The components of model synapse may be determined:

• Model of synaptic plasticity (short�term and long�term) determines the dynamics of synaptic weights
relative to activities of the presynaptic and postsynaptic neurons.

• Form of postsynaptic current.

Model of short�term plasticity Maass–Markram [5] was used, which is described below (2):

(2)

where Rk are fractions of synaptic efficacy available resources; uk are fractions of available resources,
which are activated when a presynaptic spike occurs; F is time constant for recovery from facilitation; U is
fraction of synaptic resources that are used for a single spike; D is time constant for recovery from depres�
sion; Δ1, Δ2, …, Δk – 1 are interspike intervals.

Values of parameters of short�term plasticity model were presented in Table 2.

The long�term STDP rule describes synaptic weight changes relative to times of spikes of presynaptic
and postsynaptic neurons. Several long�term plasticity rules are used in this article. Consider the additive
STDP rule used in simulations with Neural Simulation Tool (NEST) [6].
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Table 1.  Parameters of neuron model

Notation Value

v v (t = 0) = vresting

vresting 0 mV

τm 30 ms

Cm 30 nF

Ie 13.5 nA

vth See experiments

τref 3 ms

vreset 14.2 mV

Table 2.  Parameters of short�term plasticity model. Notation N(μ; σ) indicates that the parameter has a normal dis�
tribution with mean μ and standard deviation σ

Notation Value

uk uk (t = 0) = U

Rk Rk (t = 0) = 1

U
N(0.5; 0.05) for excitatory
N(0.25; 0.025) for inhibitory

D
N(1100; 110) ms for excitatory
N(700; 70) ms for inhibitory

F
N(50; 5) ms for excitatory
N(20; 2) ms for inhibitory
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On activation of presynaptic neuron weight value decreases, and vice versa, at the activation of the
postsynaptic neuron weight value increases. The change of weight described in formula:

 (3)

where tpre is spike time of presynaptic neuron, tpost is spike time of postsynaptic neuron, w– is amplitude
parameter of weight decrease, w+ is amplitude parameter of weight increase, τ– is time constant for depres�
sion, τ+ is time constant for potentiation. If the weight value is less (greater) than minimum (maximum)
allowed Wmin(Wmax), then w is assigned Wmin(Wmax).

Analysis based on source code has revealed that simulator CSIM used following STDP model:

 (4)

where Tmin = 2 ms, Tmax = 60 ms.

Values of parameters of long�term plasticity model are presented in Table 3.
It’s known, that different schemes of spike pairing [7] exist. These schemes are shown on the figure.
The scheme “A” is used in NEST, the information about scheme used in CSIM wasn’t found.
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Table 3. Parameters of long�term plasticity model. Notation N(μ; σ; a; b) indicates that the parameter has a normal
distribution with mean μ and standard deviation σ with interval constraint [a, b]. In simulators NEST and CSIM
values lower than a (greater than b) are replaced by a(b)

Notation Value

w+ 0.3

w– –0.3105

τ+ 20 ms

τ– 20 ms

Wmin 0

Wmax N(54; 10.8; 21.6; 86.4)

pre

post

t, ms

pre

post

pre

post

A

B

C

Examples of spike pairing schemes. Pre is presynaptic neuron, post is postsynaptic neuron. Adapted from article [7].
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In our work we apply two forms of postsynaptic currents: exponential and α�function form. The syn�
apse is used with short�term and long�term plasticity described above. The equation of exponential form
of postsynaptic signal:

 (5)

where S is set of synapses incoming in neuron; wj is synaptic weight of j�th synapse; tsp is time of emergence
of spike on presynaptic neuron; td is delay of spike propagation (in NEST 0.1 ms, in CSIM—0 ms); τj is
spike time decay constant of synaptic current of j�th synapse; qj is charge that is injected into the postsyn�
aptic neuron when presynaptic neuron fires a spike; respectively. H(t) is Heaviside function. uj, Rj defined
by the Eq. (2). qj for excitatory(inhibitory) synapse is 3 pC (6 pC). τj for excitatory(inhibitory) synapse is
3 ms (6 ms).

The equation of postsynaptic α�function form signal is:

 (6)

The two simulators are employed in this work: NEST [6], CSIM [8].
The NEST is a computer program for simulations of large heterogeneous networks. NEST is more suit�

able for models that focus on the dynamics, size and structure of networks rather on the detailed individual
neuron’s properties. NEST uses the opportunities of parallelism based on MPI and OpenMP. The original
version of NEST has been modified by authors to be able to use other learning techniques.

CSIM is a tool for simulation of heterogeneous networks with various models of neurons and synapses.

3. DESCRIPTION OF EXPERIMENTAL TECHNIQUE

The experimental technique was first described in the paper [9]. The purpose of this experiment was
the study of the general convergence of the learning process. The convergence was estimated in two ways:
through the convergence to the target weights and through the correlation of input and output signals.

The neural network consists of one neuron, to which 100 synapses are connected: 90 excitatory syn�
apses and 10 inhibitory. Excitatory synapses are described by equations of the short�term plasticity (2) and
by equations of the long�term plasticity (the Eq. (3) for NEST and Eq. (4) for CSIM). The inhibitory syn�
apses are modeled by Eq. (2). The neuron is modeled by Eq. (1).

Stages of the experiment:
1. The stage of selecting the maximum values of the weights:

For excitatory synapses the vector of maximum values of weights  is generated with normal dis�
tribution with average value equal to 54 and standard deviation sd = 10.8. The weights are in the range
54 ± 3sd. The weight’s values less than 21.6 (and more than 86.4) are replaced by value 21.6 (86.4) (see
Table 3).

2. The stage of selecting the target weights of the excitatory synapses:
The one�half of excitatory synapses is randomly selected, and the target weights for this half are set

equal to maximum values of the weights, obtained in stage 1. The target weights of the remaining half of
excitatory synapses are set to zero. As a result of training the weights of synapses should converge to the
vector of target weights. The weights of the inhibitory synapses are set to –54 and they remain constant at
each stage of the experiment.

3. The stage of generation of the input signal:

The independent signal sequence  is generated for each of 100 inputs. There are three
types of signals: Poisson signal (the number of spike in time interval has a Poisson distribution), and the
signals with normal and uniform distribution of interspike interval. The one type of signal sequence is used

for each experiment. The sequences  are generated with mean frequency equal to 20 Hz during 3000 s.
Subsequently the obtained sequences are used in learning process.
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4. The stage of configuration of the threshold value of the potential:

For the given input signal  the required value of the threshold potential of the neuron νth is selected
in order to generate the output signal with mean frequency equal to 25 Hz.

5. The stage of obtaining the reinforcing signal:

On this stage for the given input signal  and target of weights  the output signal is obtained.
Subsequently this output signal is used as reinforcing in the learning process. This sequence of reinforcing

signals  is used as current impulses of rectangular form with an amplitude equal to 1 μA and duration
equal to 0.2 ms. The changing of the weight through the STDP is disabled on this stage.

6. The learning stage:
The initial values of the weights of the excitatory synapses are randomly selected on the basis of gamma

distribution with average value equal to 9 and standard deviation equal to 6.3. During the learning the

input signal  and reinforcing signal  are given. The duration of learning is 3000 s.
In Table 4 the threshold value of neuron’s potential is presented. This value was obtained from the con�

dition in which for the input signal with mean frequency of 20 Hz the output signal had mean frequency
of 25 Hz.

The parameter β(t) was introduced for the estimation of the convergence to the target weights:

 (7)

where  is the vector of excitatory weights in the moment t. The summation is made only over weights
of excitatory synapses, because only they change during learning process.

4. RESULTS

The simulation results in NEST with parameters described in “Materials and Methods” and “Descrip�
tion of experimental technique” sections show that the learning does not occur and weights do not con�
verge to the target weights, parameter β(t) tends to 1.

CSIM simulator demonstrates the availability of learning and the convergence parameter β tending to
0.03 after training (Table 5). 

inS
�

inS
�

targetW
�

S
+

�

inS
�

S
+

�

target

target

90

1
90

1

( )

( ) ,
i i

i

i

i

w t w

t

w

=

=

−

β =

∑

∑

( )W t
�

Table 4.  The threshold value of neuron’s potential selected on stage 4. Exp, α means the form of postsynaptic current
described in Eqs. (5), (6) respectively

The type 
of input signal

Simulator

NEST CSIM

The form of postsynaptic current

exp α exp

Poisson signal 15.7 15.6 n/e (no evidence)
Normal signal 15.9 15.8 n/e
Uniform signal 15.7 15.7 15.1

Table 5.  Value of parameter β(t) after learning for different simulators

Type of input signal
NEST

CSIM
exp α

Poisson signal 0.1 0.2 n/e
Normal signal 0.3 Diverge n/e
Uniform signal 0.1 0.2 0.03



128

OPTICAL MEMORY AND NEURAL NETWORKS (INFORMATION OPTICS)  Vol. 24  No. 2  2015

KUKIN, SBOEV

The learning process was registered in the NEST with replacing STDP rule by (4) and replacing spike
pairing scheme “A” by “C” (figure) for three types of input signals in case of exponential form of postsyn�
aptic current (Table 5). The learning with normal input signal and the α�function form of synaptic current
does not occur and weights diverge.

Furthermore, the convergence evaluation by correlation of target output signal and obtained signal was
performed. To do so, new sequences of 100 second duration signals were generated for three types of sig�
nals. We transformed spikes by Gaussian filter with standard deviation 5 ms in calculation of correlation
of the two signals. The values of correlations for exponential form of postsynaptic current are approxi�
mately equal to 0.8 for three types of signals for experiments with NEST.

The experimental results for simulators have showed differences, because the different types of STDP
have been used in simulators and it has been necessary to examine STDP parameter sets in these simula�
tors. Further, the NEST is selected as base simulator for comparison and all results performed below are
obtained with NEST.

As it was denoted above, the original version of NEST was modified. The experiments for different
forms of STDP, spike pairing schemes, type of signals are realized and the results are provided in Table 6.
There were cases, when values of parameter β(t) did not converge in 3000 s. In such cases the experiment
was continued up to 10000 s, and if convergence was observed, the such results β (10000 s) are enclosed
by parentheses (for example, case of Poisson signal with STDP formula (3) and spike pairing scheme B
provided results: β (3000 s) = 0.8, β (10000 s) = 0.85). If convergence is not observed, then results
enclosing in parentheses represent β range in (3000, 10000) s (for example, case of Poisson signal with
STDP formula (4) and spike pairing scheme B provided results: β (3000 s) = 0.4, β(t) ∈ (0.4, 0.5) in
(3000, 10000) s).

The next step was investigation how STDP functions without neuron, only with input signal  and
output signal generated on stage 4 in “Description of experimental technique” without processing it to the

reinforcing signal  The results are provided in Table 7.

The obtained results show, that spike pairing scheme “C” is more perspective for developing of learning
models.
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Table 6.  Value of parameter β(t) after learning for NEST simulator

Type 
of input signal

Type of STDP

formula (3) formula (4)

spike pairing scheme spike pairing scheme

A B C A B C

Normal signal 1.0 0.25 (0.25) 0.15 1.0 0.1 0.1

Poisson signal 1.0 0.8 (0.85) 0.05 0.07 0.4 (0.4–0.5) 0.07

Uniform signal 1.0 0.8 (0.8) 0.05 1.0 0.4 (0.4–0.6) 0.07

Table 7.  Value of parameter β(t) after learning without neuron

Type
 of input signal

Type of STDP

formula (3) formula (4)

spike pairing scheme spike pairing scheme

A B C A B C

Normal signal 1.0 0.05 0.05 1.0 0.05 0.05

Poisson signal 0.05 0.05 0.05 0.2 0.2 0.45 (0.2)

Uniform signal 0.05 0.05 0.05 0.15 0.2 0.5 (0.2)
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5. CONCLUSIONS

In this work the investigation of STDP learning mechanisms of spiking neural networks in two different
simulators was done. The importance of selection of associated set of STDP rules, spike pairing schemes,
forms of input signals and forms of the postsynaptic currents for the learning process was shown. On the base
of the experimental results combination of these factors (STDP Eq. (3), spike pairing scheme case “C”),
suitable for learning process and which can be used for practical applications was selected. This combina�
tion is applicable for all types of input signals.
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