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INTRODUCTION

Relying on the paraxial scalar model, paper [1] showed that a lensacon [2] consisted of two small�aper�
ture elements (lens and axicon) can produce a central light spot whose size corresponds to a non�linear
increase of the numerical aperture of the tandem. A tandem like that having at least one large�aperture
element requires more exact theory. In our paper we consider linear and spiral axicons as supplements to
a large�aperture lens in terms of sharp�focusing system in the Debye approximation.

The aim of many researches in large�aperture focusing system is to decrease the transverse size of the
focal spot or/and increase the extent of the focal depth. The best results in this field have been achieved
for radially polarized incident light [3–8]. As it is radial polarization that provides the best transfer of
energy into the z�component of the electric field in the focus.

However, even in this case the theoretical limit related to the size of the Bessel zero�order beam
(full width at half maximum FWHM = 0.36λ) remains unrealizable [9]. The thing is that in spite of the
strong longitudinal component, the transverse components also make a sufficient contribution in the focal
intensity, thus broadening the total size of the central spot. Additional efforts are needed to minimize the
contribution of transverse components in the focal area. Particularly, a narrow ring diaphragm is offered
in [3, 5] to allow only rays with the largest angle to the optical axis to reach the focus. Though simple to
be realized, the method leads to a considerable loss of efficiency.

The parabolic mirror [10, 11], diffractive lens [10], micro�axicon [8] are the elements that can be used
to increase the longitudinal component for full�aperture systems. All these kinds of optical elements
should have large numerical aperture. Therefore, in the case of diffractive elements, the micro relief will
have sub�wavelength zones which are difficult to fabricate.

There are also research works that use zone plates [9, 12, 13] and special algorithms to compute the
zone radii for particular parameters of used focusing system. To avoid the loss of efficiency, the number of
zones should not exceed three [13].

Here we offer phase axicons as full�aperture optical elements that can remove transverse components
from the focal plane in the sharp focusing of a radially polarized beam. When a large�aperture lens is supple�
mented even with a “weak” converging axicon, the focal area looks like a cone whose vertex has a smaller
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transverse dimension than the focal spot of a single lens. It is because the axicon increases the numerical
aperture of central rays of the lens and redirect them from the focal plane closer to the lens plane. It is possible
to vary the extent and “sharpness” of the cone by changing the parameters of the axicon.

The strengthening of the longitudinal components of the vector field is useful for not only decreasing
the focal spot, but also in optical tweezers and 3D manipulation of molecules [14–17], electron acceler�
ation [18, 19] and other applications [12]. It is interesting that in [20] excitation of individual fluorescent
molecules was used to separate the components of a radially polarized beam.

Not only the longitudinal component of the electric field, but also the transverse components are use�
ful. Particularly, in hollow metallic waveguides radially polarized beams lose more energy on the
waveguide walls than azimuthally polarized ones [21]. Additionally, different components of the vector
electromagnetic field can be used for three�dimensional excitation of fluorescent molecules [22].

We also show that with linearly polarized incident beams (the case of most laser beams) a large�aper�
ture lensacon can be used to produce the focal spot whose area at half maximum (HMA) is 0.139λ instead
of 0.237λ for a single lens. However, because of side lobs (consisting mostly of longitudinal components)
the total electric field (the sum of intensities of all components) in the focus looks narrowed in one direc�
tion. It is possible to reduce the light spot dimension in this direction to 0.32λ.

It is shown that spiral axicons [23, 24] can be used effectively in generation of compact distributions
for circular and azimuthal polarization. In this case it is possible to compensate the polarization singular�
ity [25] existing in circular polarization and generate axially symmetric small focal spot. With azimuthal
polarization we get a similar result except that the focal spot is more compact in this case due to the missing
longitudinal component.

The possibility to achieve the sub�wavelength localization of different components of the vector elec�
tric field with the help of a vortex phase is considered in paper [26]. It is shown in the research that the
vortex phase in the axicon allows us to regulate the contribution of the field components in the core and
the vertex of the focal cone, which can be useful in controlled interaction of the electromagnetic field with
materials exhibiting different sensitivity to the longitudinal and transverse components of the field [27].

1. THE LENSACON: MEDIUM�SIZED APERTURE, PARAXIAL SCALAR MODEL

When the plane wave bounded by a round diaphragm of radius R falls on a spherical lens of focal length f,

the lens generates an intensity distribution in the focal plane which is proportional [28] to 

 The central spot of the distribution has the radius determined by the first zero of Bessel function of
the first kind 

So the least radius of the focal spot that a lens with a round diaphragm can produce is defined by the
formula:

(1)

Let us turn to the expression for the numerical aperture of aplanatic lenses in a medium with refractive
index n:

(2)

where θ is so�called aperture angle of the lens (Fig. 1).
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Fig. 1. The apertural angle of an aplanatic lens.
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Then it is possible to estimate the smallest radius of the focal spot in the free space as:

 (3)

The size of the focal spot can also be determined by the full width at the half maximum (FWHM) of
the focal�plane intensity profile (Fig. 2). In the case of a lens it is:

(4)

The least area of the focal spot determined by the area at half maximum (HMA):

(5)

The longitudinal size of the focal spot is related with the conception depth of focus (DOF), which
in the case of diffraction�limited systems can be evaluated as:

(6)

From (6) it follows that with the growing numerical aperture the depth of focus decreases and approaches
half the wavelength.

It is also known that when a lens is used with a narrow ring diaphragm [29], the intensity distribution
in the focal plane behaves as a zero�order Bessel function  whose zero occurs at a less value

 Therefore, the minimal focal spot in this case can have a less radius. However,
the efficiency of this approach is very low because the most part of the incident light is absorbed by the
stop.

The intensity distribution obeying the zero�order Bessel function  can be also generated with
the aid of more effective optical elements: refractive axicon [30], linear diffractive axicon, or binary kino�
form lens [31].

The complex transfer function of a diffractive axicon can be written as

(7)

where parameter α0 determines the convergence angle θ of rays going from the axicon to the optical axis:

(8)

and is, in fact, the numerical aperture of the axicon.
The radius of the central spot in the free space is:

(9)

The light spot size at half maximum for the axicon (Fig. 2) is:

(10)
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Fig. 2. The focal spot size for a lens (dashed line) and axicon (solid line).
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and the least area of the focal spot is:

(11)

The axial extent of the focal spot (the longest distance of diffraction�free propagation of the beam) is:

(12)

and with  the DOF of the axicon is equal to the radius R of the optical element.

All the above�mentioned elements must have the limit numerical aperture to obtain the minimal value
(the diffraction limit).

However, if we take a tandem of two optical elements, e.g. lensacon [2], we can generate a nearly�dif�
fraction�limit focal spot with “weaker” optics [1].

If a converging axicon is used, the complex transfer function of the lensacon has the form:

(13)

In this case we have a Bessel beam [1]:

(14)

which decreases in a scalable manner over the range of distances z extending as long as

(15)

The smallest radius of the central spot is at the end of this range of scalable self�reproduction:

 (16)

In the general case, this radius is less than that of the focal spot produced by either element of the tandem.

Depending on the relation between α0 and the numerical aperture of the lens, adding the axicon to lens
(or vice versa, the lens to axicon) can result in a significant reduction of the central spot. In particular, if

  and   the result is to be the theoretical limit for the axicon:

 When R = 2000λ (about 1mm for visible�range wavelengths),  mm and

 mm.

The Fresnel transformation for axially symmetric fields can be used in computer simulation of work of
the lensacon in the paraxial case:

(17)

Table 1 gives the computation results for λ = 0.5 um, R = 1 mm, f = 2 mm (numerical aperture
), α0 = 0.5. Twenty samples per a wavelength were used for the both integrands, the axial

area 2λ (1 um) in radius being quantized with 50 samples per a wavelength. The longitudinal intensity dis�
tribution was computed for 

The computer simulation results quite agree with the above�mentioned conclusions. The patterns of
axial propagation show clearly how the energy are distributes along the optical axis.

On one hand, adding the lens to axicon results in reducing twofold the self�reproduction interval of the
diffraction�free beam of a single axicon; on the other hand, a more compact focal spot is generated with
the central�spot intensity being almost an order of magnitude as high.

As compared to a single lens, the intensity of the focal spot of the tandem is nearly five times lower, but
at the same time the depth of focus is 40 times longer.
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2. A LENSACON WITH A LARGE�APERTURE LENS: 
THE NON�PARAXIAL VECTOR MODEL IN THE DEBYE APPROACH

Let us consider a large�aperture aplanatic focusing optical system in which the distance between the
focal plane and aperture is much greater than a wavelength. Then in a homogeneous dielectric medium
the electric vector field near the focus can be expressed in the Debye approach [32, 33]:

(18)

where  are spherical coordinates of the output pupil,  is the transfer function,  is the pupil
apodization function,  is the polarization matrix which is defined by polarization coefficient of the
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Table 1. Medium�aperture lensacon in the paraxial approach
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incident beam,  n is the refraction index of the medium, NA is the numerical aperture of the
lens, f is the focal length.

If the transfer function is independent of polar angle φ  relation

(19)

can be used to reduce expression (18) to a single integral over azimuth angle:

(20)

where  depends on the input field polarization [26].

In the aplanatic system the radial component is converted by the sine rule  and the pupil

apodization function is assumed to be 

2.1. Linear x�Polarization

Most modern lasers have linear polarization. Matrix  for linear x�polarization is:

(21)

Let us consider a lensacon incorporating a large�aperture lens of focus f = 101λ and radius R = 100λ.
In the infrared (e.g. λ = 10 μm) an element like that can’t be regarded as micro�optics because R = 100λ =
1 mm is large enough to conduct experiments.

In the Debye approximation we can guarantee correct results if the Fresnel number

(22)

is high. In our case  is high enough [32].
The x�component makes a major contribution to the axial intensity distribution:

(23)

Adding a narrow ring�shaped stop  to the lens results in formation of a field that is
proportional to a zero�order Bessel function and independent of defocusing distance z: 

(24)

The central spot radius is dependent on azimuth angle  and can’t be less than

(25)

If an axicon is used as  the axial distribution (at ρ = 0) complies with the expression:

(26)

It follows from (26) that with small numerical apertures (i.e. with small θ) the effect of the axicon is small,
with the growing numerical aperture the effect becomes more significant, and with  we don’t
see any z dependence.
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The computation results for a single lens of focus f = 101λ and radius R = 100λ and the same lens com�
plemented with various axicons are given in Table 2. The number of samples along the azimuth angle is
2001, the transverse size of the calculated area in the focal plane is 4λ × 4λ.

As seen from Table 2, complementing the lens with axicons stretches the focus along the optical axis.
The greater the numerical aperture of the axicon, the more the focus elongates in the longitudinal direc�
tion and the more it narrowed in the transverse direction.

Given sharp focusing, a lensacon with a “weak” axicon generates a beam whose properties are close to
those predicted by the paraxial model. However, due to the longitudinal component the focal spot is not
symmetric. Note that if we use a powerful lens with even “weak” axicon (say, α0 = 0.1), in vertical direction
we can reach the limit that is provided by a single large�aperture axicon: FWHM = 0.36λ (the second row
in Table 2).

With a high�NA axicon (e.g. α0 = 0.5), it is possible in vertical direction to overcome the diffraction
limit for both the lens and axicon: FWHM = 0.32λ (the third row in Table 2). Further increase of α0

doesn’t cause a significant decrease of the vertical size of the focal spot. At the same time the focus will
elongate in the axial direction and the energy in the center of the spot will fall.

Figure 3 shows the longitudinal and transverse focal distributions for a lensacon of radius R = 100λ
consisting of a lens of focal length f = 101λ (NA = 0.95) and an axicon with parameter  changing from 0
(no axicon) to 0.95.

0α

Table 2. The focal longitudinal and transverse intensity distributions for linear x�polarization

Longitudinal intensity picture Transverse intensity picture 

Lens, 
f = 101λ

z ∈ [81λ, 121λ],  x ∈ [−2λ, 2λ] 

Z = 101λ: FWHM (⎯) = 0.76λ,  FWHM ( ⎜) = 0.48λ

Lensacon, 
α0 = 0.1

z ∈ [61λ, 101λ],  x ∈ [−2λ, 2λ]

Z = 95λ: FWHM (⎯) = 0.82λ,   FWHM ( ⎜) = 0.36λ

Lensacon, 
α0 = 0.5

z ∈ [61λ, 101λ],  x ∈ [−2λ, 2λ]

Z = 87λ: FWHM (⎯) = 0.84λ,   FWHM ( ⎜) = 0.32λ

x z y x
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In the vector non�paraxial case the transverse intensity profile is not symmetric, so Fig. 3b gives the ver�
tical intensity profile when the total intensity is equal to the intensity of the x�component. As seen from
Fig. 3b, the transverse extent of the central spot stops decreasing after the numerical aperture becomes
greater than = 0.5.

2.2. Radial Polarization

Matrix  for radial polarization is

(27)

When we use a large�NA focusing optical system for beam with radial polarization, the longitudinal
component [26] makes a major contribution to the total axial intensity distribution:

(28)

Applying a narrow ring�shaped stop to the lens also results in generation of the field corresponding to
the zero�order Bessel function:

(29)

Yet with  90° the intensity (29) will be much higher than in (24). In particular, at  = 82° it is three
times as high. Nevertheless, diaphragming an optical system brings a decrease in energy efficiency. That
is why it is preferable to use phase pupil apodization rather than amplitude apodization. For example, cir�
cular binary phase plates are offered in [13, 34] to enhance the contribution of the longitudinal component
to the total intensity of the vector field.

If an axicon is used as  the axial (with ρ = 0) intensity profile follows the expression similar to (26):
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Fig. 3. Axial (a) and transverse (vertical) (b) intensity distributions generated in the focal area by a lensacon consisting of
a lens with NA =0.95 (R = 100, f = 101λ) and different axicons: with α0 = 0 (no axicon, grey solid line), α0 = 0.1 (black
dot line), α0 = 0.5 (grey dot line), and α0 = 0.95 (black solid line).
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It is seen from (31) that if  90° then  (similar to the use of a narrow ring�shaped stop). When
θ is small,  that is, term  related to the axicon phase function is responsible for the
elongation of the interval of small variation of function (30).

So, adding an axicon to a lens increases the numerical aperture of the lens by a constant value, which
in the case of large�NA lenses has effect only on rays travelling through the central part (Fig. 4a).

Obviously the best way to compensate the numerical aperture is to supplement a lens with a phase ele�
ment whose numerical aperture varies as 1 – sinθ. This kind of tandem will work as a “powerful” linear
axicon.

An example of complementing a large�aperture lens with a fracxicon [1] of  (α = 1) is
shown in Fig. 4b. In this case the numerical aperture almost never exceeds the limit value for free space
and increases considerably in the central part.

Table 3 gives the computer simulation results of the focusing of a radially�polarized plane wave by a

101λ�focus lens and a lensacon with axicon parameter   In the first case the wave
is cut by an annular stop (the radii of the ring are R1 = 99λ and R2 = 100λ), in the second case the wave is
stopped by a round diaphragm of radius R = 100λ.

It follows from Table 3 that in the case of radial polarization, the intensity distribution is radially sym�
metric. The radius of the central light spot corresponds to the minimum of the zero�order Bessel function
and won’t decrease.

For a lens with a narrow annular stop (slit width is λ) the contribution of transverse components to the
focal spot is almost zero. The use of the annular stop results in the energy loss proportional to the area of
the blocked central part of the lens.

Free of energy losses, a full�aperture lensacon produces at the focus a cone�shaped intensity distribu�
tion. The vertex of the light cone has no transverse component. When we increase the axicon numerical
aperture, the focal cone elongates in the axial direction (Table 4) with the intensity distributed almost
evenly along the axis (Fig. 5).
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Fig. 4. Numerical aperture (NA) for (a) a lensacon (black solid line corresponds to a large�aperture lens, grey solid line
stands for an axicon with α0 = 0.5, dotted line is the total numerical aperture) and (b) a lens complemented with fracxicon
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Fig. 5. The axial intensity distribution produced by a lens with a narrow (λ�width slit) annular stop (black solid line), a
full�aperture lensacon with α0 = 0.1 (grey solid line), and a lensacon with α0 = 0.5 (dotted line).
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Note that the body and vertex of the focal cone consist of only longitudinal component, while “side�
lobes” include the transverse components (Fig. 6).

3. VORTICAL LENSACON IN THE DEBYE APPROXIMATION

Paper [26] showed that it is possible to reach sub�wavelength localization of light in sharp focusing of
a vortex field. The central light spot is symmetrical for both azimuthal and circular polarization in this
case.

With azimuthal polarization the effect of sub�wavelength localization is possible only for the transverse
components of the vector electric field. For circular polarization the effect exists for the longitudinal com�
ponent.

Table 3. The longitudinal and transverse focal distributions produced by a lens with a narrow annular stop and by a
lensacon with a large�aperture axicon in the case of radial polarization
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3.1. Azimuthal Polarization

For azimuthal polarization described by matrix

(32)

the presence of the vortex phase in the transfer function:

(33)

leads to the following form of the field in the focal area [26]:

(34)

(35)

where   

It follows from (32) that the longitudinal component is always missing.

On the optical axis (with ρ = 0) field (34) has non�zero components only for one order of vortex phase
singularity  This allows the components proportional to  to appear in (35) (Table 5).

3.2. Circular Polarization

For circular polarization described by matrix 
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Fig. 6. The longitudinal distribution for a single lens (a) and lensacons with α0 = 0.1 (b), α0 = 0.5 (c) and α0 = 0.95 (d).
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the presence of vortex phase (33) in the transfer function allows the formation of a field of type (34) with
vortical matrix [26]:

(37)

where     is the sign of the
input polarization.

On the optical axis (with ρ = 0) field (36) will have non�zero components only for vortex phase orders
 This allows the components proportional to  to appear in (37) (Tables 6, 7).
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Table 4. The longitudinal intensity distribution produced by a full�aperture lens and a lensacon incorporating a
small�aperture axicon for radial polarization of the incident light

Transmission function 
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Use of a large�aperture axicon allows a stable extended pattern with a sub�wavelength size of the central
spot to form in some components of the vector electric field. This fact should be taken into account when
we deal with the interaction of laser radiation with materials that have different sensitivity to different vec�
tor components [27].

Use of vortex phase filters makes it possible to select different components (longitudinal or transverse)
of the vector field in the axial distribution: the vortex phase singularity compensates polarization singular�
ities [25, 26] and non�zero axial items corresponding to  appear in different components, which
defines the minimal achievable size of the central spot of the zero�order Bessel beam [9] (i.e. FWHM =
0.36λ).

If we use “weak” vortical axicons (as shown in Table 7), the intensity varies significantly over the inter�
val of scalable self�reproduction, and the compact light spot forms only at the end of the interval. However,
the intensity at the vertex of the focal cone can be much higher (see Fig. 5) in this case, which can be
important in some applications.

So, the computer simulation results obtained in the Debye approximation show that the use of the tan�
dem consisting of a large�aperture lens and small�aperture axicon allows us to produce a compact light
spot. An increase of the axicon numerical aperture causes the transversely compact focal area to stretch in
the axial direction with an almost even intensity distribution over this area and lower intensity at each par�
ticular axial point.

0( )J t

Table 5. The longitudinal and transverse distributions of the total intensity for azimuthally polarized beam with vor�
tex phase function (|m| = 1) and for a vortical lensacon
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Table 6. The longitudinal and transverse distributions of the total and component’s intensity of the field for a vortical
lensacon with α0 = 0.95  and large�aperture lens (NA = 0.95) in the case of circular polarization
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Table 7. The longitudinal and transverse distributions of the total and component’s intensity of the field for a vortical
lensacon with α0 = 0.1  and large�aperture lens (NA = 0.95) in the case of circular polarization
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CONCLUSIONS

We have considered the use of axicons in large�aperture focusing systems with different polarization in
terms of the Debye model.

The investigations confirm that it is possible to decrease the focal spot size generated by a large�aper�
ture lens by complementing the lens with a diffractive axicon (the effect can be observed even with a small�
aperture axicon). Being an alternative to the use of annular diaphragms, the approach is more energy
effective.

When a lensacon (tandem of lens and axicon) is used, the focal area looks like a cone, which agrees
with the results of paraxial modeling [1]. However, unlike the paraxial approach, the integral expressions
for the complex amplitude in the focal area allows the size of the central spot of the zero�order Bessel beam
to be determined as the smallest achievable size of the focal spot (FWHM = 0.36λ). Depending on the
“strength” of the diffractive axicon, the sub�wavelength focal spot is spread in the axial direction over
some distance.

Nevertheless, in the case of linear polarization the limit can be overcome in one direction (FWHM =
0.32λ).

For circular polarization, it is possible to get a decreased size of the axially symmetric focal spot by
using vortical axicons. In this case the polarization singularity inherent to circular polarization is compen�
sated [25, 26]. For azimuthal polarization, the compensation is made in a similar way except that the light
spot will have a smaller size due to the missing longitudinal component.

We have also demonstrated that the presence of the vortex phase (of the first and second order) in the
axicon allows us to control the contribution of different components of the electric field in the core and
vertex of the focal cone. Accordingly, it is possible to reach a noticeable sub�wavelength focusing of light
for each particular component (FWHM = 0.41λ), which may be useful in controlling the interaction of
electromagnetic radiation with the materials that react differently to different field components.

However, the model doesn’t permit us to get correct results with medium�aperture lenses because the
Debye approximation works well only in the case of large Fresnel numbers. The results also become less
reliable as we move away from the focal plane, and the use of an axicon results in not only elongation of
the focal area, but also its considerable shift towards the optical element.

Accordingly, it is necessary to additionally research the complex amplitudes in the vicinity of the focus�
ing element plane. Rayleigh�Somerfeld diffraction integrals or the plane�wave expansion approach can be
used to solve the problem.
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