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Abstract—We consider the random process at — vy (pt) + v_(—qt), t € (—o0, 00), where v_ and
v, are independent standard Poisson processes if ¢ > 0 and v_(t) = v4(¢) =0 if ¢ < 0. Under
certain conditions on the parameters a, p, and ¢, we study the distribution function G = G(z)
of the time of attaining the maximum for a trajectory of this process. In the present article, we
find an exact asymptotics for the tails of G. We also find a connection between this problem and
the statistical problem of estimation of an unknown discontinuity point of a density function.
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1. INTRODUCTION AND FORMULATION OF THE PROBLEM

Fort >0, let v— = v_(¢t) and v = v, (¢) be independent standard Poisson processes. For ¢ < 0, let
v_(t) = vy (t) = 0. We put

Y(t) :at—l/+(pt)+l/_(—qt), te (—O0,00). (1)

The parameters a, p, and g are positive and satisfy the conditions

p—q
p>q, a= : (2
In (p/q) )
By (2) and Lagrange’s theorem, we obtain the inequalities
p>a= P70 g (3)
Inp—1Ingq

They guarantee that the average drift of stochastic process (1) is negative; namely, we have

EY (t) = (a—p)t <0, t>0,
(a—q)t <0, t<O.

Taking results of [15, Sec. 26] into account, we conclude that there exists a unique (with probability 1)
proper random variable t*(Y') = argmax {Y (¢)} whose distribution function G is continuous. An explicit
formula for G was found in [11] and later clarified in [12].

Put
A(z)=2z—1—Inz, z>0. (4)
Notice that A(z) is positive if z # 1. By (2), we have
A(p/a) = Aq/a). (5)
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THE DISTRIBUTION OF THE TIME OF ATTAINING THE MAXIMUM 27

We denote A = A(p/a) = A(q/a).
In [6], the exact asymptotic formulas
C_(p, Q) —dax
G(—x) ~
(o) ~ e,

C+\P,4) _xaz
1-G(z) ~ +a;(3/2)6 Aaz

T — 00, (6)

are obtained for the distribution tails
P(t*(Y) < —2) =G(—z) and P(t*(Y)>z)=1-G(x),
where the constants ci depend on the parameters of stochastic process (1) only. The author of [6]

mentions that he cannot find explicitly one of these constants but it is possible to find the other constant
with the use of analytical methods from [3—5].

The aim of the present article is to find the constants ¢4 in their explicit form and to obtain a series of
results that clarify the analytical form of the distribution function G.

In the conclusion of this section, we mention that stochastic processes of the form (1) arise in
the mathematical theory of insurance [14, p. 719] and in mathematical statistics [1, 2, 7—10] where
we need to estimate an unknown discontinuity point of the density function for a given sample. Indeed,
assume that the density f = f(z,0), 8 € ©, of an absolutely continuous distribution admits a unique
jump at a point x = 0, i.e., we have

0<q(f) = f(0—0,0)< f(6+0,0) =p(6), 00O,

and {@L} is the series of maximal likelihood estimates (MLEs) of the parameter 6. The limit distribution

(as n — 00) of the normed MLEs n(gn — 6p) coincides with the distribution of the time of attaining
the maximum for a trajectory of the process

Z(t) = (p(60) — a(60))t = In (p(60) /9(60)) (v (p(00)t) = v—( = a(60)?) )

see [7, Ch. 5]. Put p(6p) = p and q(6y) = q. We obtain Z(t) = In(p/q)Y (¢) and, consequently, t*(Z) =
t*(Y).

2. MAIN ASSUMPTIONS AND RESULTS

In stochastic process (1), we substitute ¢ := at. This linear substitution allows us to simplify
formulations and proofs. We obtain the following stochastic process:

Y*(t) =t —vi(pt) + v-(—qt), t € (—00,00), (7)
where p := p/a and ¢ := g/a. Conditions (2)—(3) for stochastic process (7) assume the following form:
p>a=1>q >0,
p—q=In(p/q).
In the sequel, it will be more convenient to use the following form of the latter equality:
pe ? =qe 9. (9)

Denote by G* = G*(x) the distribution function of the time of attaining the maximum for a trajectory of
stochastic process (7). By (6), the following asymptotic formulas are valid as x — oo:

(8)

G (—z) ~ Cix(:f)/;q) o
. (10)
1 - G*(z) ~ C-;(f/;Q)e—)\z’
where (see (4) and (5))
A= Ap) = Ag)- (11)
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28 MOSYAGIN

We find the constants ¢ from (10). We consider the analytical representations of G*(—x) and G*(x)
forx > 0 obtained in[11, Theorem 3] and [12, Theorem 1]. We have

G*(—z) = (1-q)q (/ Z (g dz—/ Z (g bkdz), (12)

k=[z]+1
—1)g [2] pk k= 1
G (z) = +ﬁ/ —pzz k) (z — k) dz, (13)
where
me(q) = (gk)*te /K, k=1,2,..., (14)
b= pB(1—4q/p),
£ is the unique positive solution to the equation
1—e 7 =3/p, (15)

and [z] denotes the integer part of a number z. The integrand « in (13) is the distribution function for
a certain random variable; namely, we have

Y(x) = P(igg Y*(t) < a:)

[]
=0 Y1

m=0

ed@=m) >0, (16)

An analytical form of this function was found in [ 15]. [ts properties were studied in[11, Lemmas 2 and 4].
The following assertions are the main results of the present article.

Theorem 1. The constant c¢* in (10) has the form

oo (- ( 1 p(exp{(r —a)*/p} - 1) >

Vor(l—qet=a) \ 1 —qe"~7  (p—q)2(exp {(p — q)2/p} — gel=9)

Theorem 2. The constant ¢ in (10) has the form

s pl—aq) ( 1 +(pQ—pq—i'Q)eXP{Q(l—p)/p}—1>
T Vor(p—1)2\ 1 —qge'e (p exp{q(1 —p)/p} — 1)2 '

3. PROOFS

Lemma 1. The number 3 = p — qis a solution to equation (15). The constant b in (12) and (14)
is equal to (p — q)*/p.

Proof. We have p — ¢ > 0. Substitution 8 = p — ¢ in (15) leads to relation (9).

Lemma 2. For every natural n, we have

G*(=n) = (1-q)q (Z’WM bz (1 — e ) mrnlg )) (17)

where the sequence {wk q } is defined in (14) and the constant b is defined in Lemma 1.

Proof. We introduce the following notation for the integrals in (12):

n—/ Z 7k (q Bn:/ e Z me(q)e P* dz.
n k=[z]+1

" k=[z]+1
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THE DISTRIBUTION OF THE TIME OF ATTAINING THE MAXIMUM
We have

m=n k= [z]+1 m=n k=m+1

00 k—1 o)

E E (g Z (k —n)m(q Z/ka
k=n+1m=n k=n-+1

m=n* "M k [}+1 m=n k=m-+1
00 k—1 m-+1 00
S bk / P dz= 3 mla) bk:/ & s
k=n+1 m=n"* " k=n+1 n
> 6
—bk —bk
= > mlge bzwm )1 —e ).
k=n+1

[t remains to substitute the ultimate expressions for A4,, and B,, into (18).
Lemma 3. The following asymptotic relations are valid:
(1
c_ —An
n ~ € ’

oo (2)
ze Mend) ~ e
n 3/2 b))
Pt \/27an /
3)
c
S (@) ~ e
3/2
1 V2mqn3/

as n — oo, where ¢V = e (1 —e), ? = e (b —eH), B = e (1 —eH)?
stant \is defined in (11).

Proof. We use definitions in (4) and (11) and transform sequence (14) as follows:

k‘k_le_k k‘k_le_k
_ —(qg=1-Ing)k _ —Ak =1,2,....
wk(Q) Qk' € Qk' € ) k ) Ly
We have
Toin(q) = e (n)e M
where
V2032 (k + n)ktn—le—(ktn)
Ck(n) = (i +n)! , k=1,2,....

We find that

—\n o0

> e
> Thinla) = > Ci(n)e .
k=1 V2mqndl? (=
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30 MOSYAGIN
We apply Stirling’s approximation (k +n)! ~ v/2m(k + n)ktn+1/2e=(+n) 5y o0, to sequence (20).
We obtain

lim Ci(n)=1, k=1,2,....

Since (k 4 n)! > V2 (k 4 n)kt7+1/2e=(k+7) e have
1n3/2
(2 <1

for all kK and n. We conclude that the following equalities are valid:

i S 5 o -
k=1

Together with (21), they yield the first asymptotlc formula of the lemma. The proofs of the second and
third formulas are similar and are based on the same expression (19). For example, we deduce

0 e_)\n [ee}
kTpan(q) = Cr(n)ke ™k,
Z + V2mqn3/? ;

lim Z Cr(n)ke M = Z ke™ =™ /(1—e?)? = .
=1

Cr(n) <

Proof of Theorem 1. By (17)and Lemma 3, we have

_ 1 @\ —xn
G*(—n) ~ 1\/2: <c(_3) . b “ >e n — 00.
We find the constant ¢* . We deduce

. Ll—gq e 1 e e
ct = _ _
T oVor\(1—e )2 b\l—-er eb—eA

_ (1—g)e? 1 e — 1
CV2r(l— e (1 —e N beb — e—A)>‘ (22)

We replace e by ge! 7 (which is also equal to pe'™P) and b by (p — q)?/p. We finally obtain

(1-q)ge' 1 < 1 p(exp {(p—a)*/p}-1) >

cz(p,q) = \/271'(1 gel- 0) 1—qel_q (p—q) (exp{p q) /p} gel— q)

Remark 1. It is not difficult to see that ¢* > 0. Indeed, since e=® > 1 — b, we obtain the following
lower estimate for the expression in the last parentheses in (22):

1 et —1
1—e > bleb—e?)

1 e —1 1 et —1
1—e*  beb(l —eAd) T e beb(1 — e )

1 1—e?
= 1— .
1—e_>‘< b >>O

_ kf::o (qe_q)kkff R (23)

For z > 0, we define
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THE DISTRIBUTION OF THE TIME OF ATTAINING THE MAXIMUM 31
(pe ) (z+ k)" .

Ji(z) = ol e P2 k=0,1,...,
o0 0o 24)
—pz pe P)*(z + k)k (
=Ygy =y P EHET
k=0 k=0

where we assume that 0° = 1. Recall that p and q satisfy relations (8)—(9). Hence, we have
J(z) = e PPp(z2). (25)
Lemma4. The following representation is valid:

i (ge= ) (k) 4

o(z) = 1l z".

k=0
Proof. Applying Newton’s binomial theorem to (23), we find that
( ) _ i (qe—q)k zk: com mk,k—m
p(z) = Iz [

k=0 ’ m=0

_iqe—q mz qeqkmkkm
m=0
_ i (ge™ )™ mz (qe”)*(m+ k)"
= m)! — k!
[t is obvious that the second sum in the rightmost expression is equal to ¢(m).

The following assertion is of intrinsic interest too.

Lemmab. /[ pand qsatisfy relations (8) then the functions ¢ and J from (23) and (24) can be
represented as follows:

p(z) = /(1 -q),

J(2) = 0%/ (1 — ). =)
Proof. We formally differentiate the series ¢(z) from (23). We find that
7 (2) = ,i e qe‘qZ (e G R (27)
We obtain the equality
¢'(2) = gep(z + 1) (28)

because the following estimate is valid for the series in (27):

i (e )F(z 4+ 1+ k)F _ i (qe™D)FEF(1 + (2 4+ 1)/k)*

k! k!
k=0 k=0

oo
ez—i—l e Ak

q€
< .
Z \/27Tkk+1/2 —k \/27T — \/k

We recall that A = ¢ — 1 — Ing, see (4) and(ll).
We use induction and prove the first equality in (26) for integer values of n, i.e., we prove that

QD(TL) :eqn/(l_q), n:0717"' . (29)
For the base case, we use the well-known series

—q kkk z+1

i (e KR ¢

= 0<gxl1
k! 1_q7 q )

k=1
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32 MOSYAGIN

see formula 4 at [13, p. 707]. Combining the above formula with (23), we obtain

B qe 4 kk:k qg 1

1+§: =1+, =,

This corresponds to equality (29) for n = 0. We assume that equality (29) holds for some natural
number n. Applying (28), we deduce
go’(n) qedm ed(n+1)
ge?  (1-q)ge™®  (1—q)
We substitute the expression on the right-hand side of (29) into the representation of ¢(z) from
Lemma 4. We find that

— (gDt /(1—q) 4, 1 o (g2)F _ et
SO(Z):Z k! Zzl—qz k! :1—q’
k=0 k=0

which finishes the proof of the first equality in (26). Combining this equality with (25), we obtain
the second equality in (26).

p(n+1) =

z

Lemma 6. The sequence {Jk} of functions in (24) satisfies the equalities

OOJk(Z) —(p—q)z
zkzz()z+k:(1—q)J(z):e P2z 2 > 0.

Proof. We verify the equality

@) oy Zpa ). (30)
z+k
k=0
Indeed, we have
izijk<z>=§Jk<z>—iszJ< )
k=0 k=0 k=0

o)
i Z pe p Z + k‘) e_pz
=1

s (pe_p) (Z + 1 + k)ke—p(z-i-l)

=J(z)—p ol

k=0
=J(z) —pJ(z+1).
By the second equality in (26) and equality (9), we find that
pJ(z+1) = pe~ P J(2) = pePel(2) = ¢J(2).
Combining this relation with (30) and (26), we obtain the required assertion.

We prove an assertion concerning the integral in (13).
Lemma 7. For every natural n, we have

1-G*(n)=(p— q(/ Z+k V(z 4+ k)p_k(z + k) dz

o© > Ji(2)
+/0 zzp(z)];z+kdz>. (31)
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Proof. From (13)and Lemma 1 it follows that

(=] k- 1
1-G*(n)=(p— q/ epzz k)p(z —k)dz = (p—q) In
where I, denotes the integral in (32). We have
o rmel m pkzk 1
I, = Z/ —pzz E)p(z — k) dz

m+1 k. k—1

= Z Z/ (z —k)yY(z — k)p Z! e P*dz.

m=n k=0"“™

We transform the latter expression as follows (for brevity, we omit the integrand):

k=0v"™

0m=k"™ k=0m=k" ™
e’} ) n—1 n n—1 00 e’} [o%)
YDA A
k=0"k k=0"k k=077 k=n"Fk
Thus, we have
n—1 00 k. k—1
I, = / (z — K)oz — k)Y ’Z, e P dz
k=0"" ’
00 oo E_k—1
prt L
+k§:%/k (z —k)Y(z — k) T P2 dz.

We replace z by z — n in the integral in the first sum from (33). We obtain

Z/ cn—k V(iz+n—k)Jy(z+n—k)dz

Z+n

z+k
/ z+n (z+k)Jn_r(z+Ek)dz.

We replace z by z — k in the series of integrals from (33). We obtain

— [ Ji(2) _/°° — Ji(2)
Z/o z1[1(z)z+kdz— ; z¢(z);z+kdz.
Combining this equality with (34), (33), and (32), we obtain (31).

Remark 2. Forn = 0, we can represent the integral I,, in (32) as follows:

[2] kk _
IO—/ —pzz iy 1 i/J(Z—k‘)dZ:(l Q)p.

SIBERIAN ADVANCES IN MATHEMATICS Vol.30 No.1 2020
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Indeed, from (33) and Lemma 6 it follows that
k k—1

IO—Z/ z—k z—k:)pz' e P*dz
_Z/ w2 z—i—kd _/ “p(z z—i(-li -

—(p q)z dz = ( q b ]
L/‘ v (p—q)?
The latter equality is a consequence of the equality

> P e—,Bz = (1_Q)p
Jﬁ W) a (r—q)B

from [11, Lemma 4] and the equality 8 = p — ¢, see Lemma 1 (and Lemma 9 below). By (35) and (13),
we obtain

G™(+00) = + (-
(+00) b q (p q%p_wg
The following two assertions describe exact asymptotics for the integrals in (31) as n — oc.
Lemma 8. The following representation is valid:

Z+ k Cy —An
/ ain Y(z+k)Jp—k(z+k)dz ~ n3/2¢ (36)
as n — oo, where
Z+k (Z+k) —(p-1)
?dz. 37
C+ \/271'/ ‘ © (37)

The following upper estimate is valid for the constant c(+1> :

D < y :(+ 1 " (38)
Proof. Since
Yort=1p-1), Dk F=p/p-1)? (39)
k=1 k=1

estimate (38) is immediate from the inequalities 0 < 9 (+) < 1, where % is the distribution function
in (16). Indeed, we have

/ Z+k p 1) dz
\/27'('

1 k/ -1 [ e
ze dz+ k e~ (P12 g,
sz 0 S

0

—k
\/27r Z \/271'(]9—1) ;kp

k=
p+1

T Vor(p— 1)
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We denote by f,, the integrand in (36). We use the definition of the functions J in (24) and transform:

falz) = Z S e+ k)T (2 4 F)

1 zZ+n
f: z 4+ k(2 + k) (pe P)F(z + n)nhl o—pleh)
(n—k)!
k=1
_ (pe?)ran! s (24 k(2 + k)nl
n! I+ n ;pk(n—k)!(z—kn)k ’ (40)
We denote
—p\n,,n—1
o, = P
n!
n! (41)
k<
Biz)={ (n—k)(z+n)k> "=
0, k>n,
where k,n=1,2,... and z > 0. By (40) and (41), we have
fu(2) _ - "IN (A R)Y(z 4 k)
11 B . 42
o )X n(2) (42)

k=1
The asymptotics of the expressions in (41) has the following form as n — oc:
(pe—p)nnn—l B e—)\n

Ap ~ =
n V2mnnt1/2e—n \/27m3/2’

(13)
, o (=1/m)--(=(k—1)/n)
Jm, Br(e) = Jim, (1 +2/n)k -

moreover, we have BF(z) < 1iorall k,n = 1,2,...and z > 0. Using (43) and (39), we find an integrable
majorant (that is independent of n) and the limit of the sequence of functions in (42). Indeed, we have

fn(2) —(p— (z + k) z P
an v I)Z poome (p—1+(p—1)2>’

= P
~ (44)
i () _ o~z S (2 +k)p(z + k)
n—oo Ay pk
k=1
From (44) it follows that
00 - d )
lim fo fn(z) d= = / lim (fn(2)> dz
n—oo [e7% g n—® [e7%
_ / e_(p_l)z Z (Z + k)?i(z + k) ds .
0 1 p
Combining the last formula with the first relation in (43), we obtain relations (36)—(37).
We turn to the asymptotics of the second integral in (31).
Lemma9. We have
[e'¢) 0 (2)
Jk(2) '
/0 z¢(z)zz+kdz~ 3726 (45)

k=n
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as n — oo, where

@) _ 1 / > ~(p-1)z g
cy Var(l - pev) Jo z)(z)e z.
The following upper estimate is valid for the constant cf) :
1
2 o

V2r(1 = pel=P)(p—1)2
Proof. We denote
@) =3 g

k:nz—i-k

We use definition (24) and transform sequence (47) as follows:

o e~PYk (5 k—1
gn(z) — Z (p ;D) ( + k) e P?

k!
— k:+n)
ey S (e ) (1 2 )
n3/2 — (k+n)len ’

We obtain the following representation:

—>\1’L o0

gn(2) = 3 ch

where
n— k+n—1
Ok (z) = (pe™P)kn3/2(k + n)k+n=1 (1 + 2/(k + n)) .
(k+n)len ’
k=0,1,..., n=1,2,....

By (47) and (48), the integral in (45) assumes the form

o — Ji(2) e
/0 Z¢(z)]§z+kdz:n3/2/ ch

Notice that
(pe—p)k 3/2(k‘—|—n)k+n_1 z
\/2W(k<+-n)k+n+4/2€ k—nen

Y 3/2 —Ak
_ e < n > e—(p—l)z < € 6_(p_1)z kE=0.1,...;
Vor \k+n T Vo 7 o

—pz

Cp(2) <

moreover, we have

lim CF(z) = f/2 e~=Dz  k=01,....
n—oo T

This allows us to make passage to the limit:

lim 21)(2) Z C*(2)dz
n—oo Jq o

SIBERIAN ADVANCES IN MATHEMATICS Vol.30 No. 1
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THE DISTRIBUTION OF THE TIME OF ATTAINING THE MAXIMUM 37
00 [e.e]
:/0 21[)(,2)21111_)11010 C*(2)dz
Z —)\k/ Je— =Dz g

pl d_(2)
\/27r1—e_>‘/ YLz fT

where the last equality is a consequence of definitions (4) and (11), i.e., we have
e = pelP(= ge'T9).
Taking (49) into account, we obtain (45).
The upper estimate for the constant cf) is immediate from (46) and the relations

(2) 1 /OO —(p—1)z _ 1
< dz = .
“ V271 (1 — pe=P) Jo = - V271 (1 — pel=r)(p — 1)2

Lemma 10. Forevery s > 0, we have

00 B 1_q
#dz = 50
| veea= T (50)

> —s8z _ (1 - q)(l - qe—s)
/0 z(z)e” % dz = (5— g+ ge—)2 (51)

where the function 1 is defined in (16).
Proof. We use the following properties of the function ¢, see [11, Lemma 2]:

V(z)=q(¥(z) —(z—1)), =z>1, 52)
P(0)=1-q, () =0, 2z < 0.

We integrate by parts. We have
/ "L/J e~ dy = — / w o5

:1‘q+q/ ((2) — (= — 1))~ dz

S S 0
1-q ¢ q/°° N
= I(s) — —1)e %%d
8+S(8) Slw(z )e z
1_ —S
R (O ()

We solve the equation with respect to I(s) and obtain (50). The proof of equality (51) is similar. Indeed,
we denote by I(s) the integral in (51) and deduce:

I(s) = /0 zp(z)e” % dz = —i /0 21 (z) de”**
= i /OOO e dzy(z)
= i /OOO V(z)e %% dz + (sj /Oooz(z/J(z) — (2 — 1))e—sz dz
_ L[ sz Q04 [T -
= 5/0 P(z)e 7 dz + SI(S) /1 2p(z —1)e” ¥ dz.

S
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The last integral can be represented as follows:

/OO(Z +1)(2)e ) dz = eI (s) + e /OO W(2)e " dz.
0 0

Taking into account the previous chain of equalities, we obtain the equation

/¢ e dz+ 11(s) - /1/1 Je o d.

We use the integral in (50) and find that

1—gqe _
I = e %% d
() S_HW/ W(2)e* dz.

The following assertion is immediate from (51) and (46).
Lemma 11. The constant cf) in (45)—(46) has the form

2 (1-gq)(1 - ge'™?)
T V2r(l—pel ) (p— g — 1+ gelP)?’

The following assertions will be needed for finding the constant Cs:) from (37).

Lemma 12. We put

=ZW+’“ Qo) = * (53)
k=1 p
H(z) :i (”k);”,f”k), 2>0 (54)
k=1

Then the functions Q and H satisfy the differential equations

= 1= a
Q'(z) = » Q(2) p¢( ) (99)
) = AP =) gy Py €y
H'(z) = ) H(z)+ ) Q(z) p¢() pwu (56)
moreover, we have
(k) 1—gq
_kzzl p* pexp{e(l-p)/p} -1 o7
H(0) = f: kwik) _ (A =a)(p—q)exp {1 - /p} (58)
= P (pexp{q(l— /p}—l)

Proof. By (52), the distribution function ¢ and its derivative are bounded. Therefore, we may
differentiate series (53)—(54) term-by-term. We differentiate (53). We use equality (52) and obtain (55):

> k > k-1
/z):qz¢(2p2‘ )_qzl/}(z‘;k )
k=1 k=1

> 2+ k
=00 - 1Y <406 - o) - Tt
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We substitute
- q/ ne —l—t)exp{—q(p_ Ut} dt
P Jo p

into equation (55) and find that @ is a solution to (55). Indeed, we have

QO'(z) = 1(:1) /OOO exp {—q(pp_ 1)75} dip(z + 1)

_ Zq/;(z +1)exp {—q(pp_ 1)t} :O

N q(pp— 1) -Z/Ooow(ert)eXP{—q(p_ 1)75} dt

p
q q(p—1)
= — 0) + Z).
pw( ) » Q(z)
Since
Q(+00) = q/ exp{_q(p—l)t}dt: 1 |
P Jo P p—1
this function satisfies the boundary condition in (53). From (59) and (50) we obtain (57):

_Z/Oooqp(t)exp{—Q(pp_l)t}dt: 1=a

pexp{q(l1—p)/p} -1
Differentiating series (57) with respect to p, we obtain (58):

(ke < k)
w0 =32 (320
=1 P

k=1

1—g¢q !
_p<p exp {q(1 —p)/p} — 1>p
_ (1=a)(p—g)exp{q(1 - p)/p}
(p exp {q(1 —p)/p} —1)?
[t remains to verify equality (56). By (54) and (52), we have

(z+ k) (z+k)(V(z+k)—Y(z+k—1)
;”tﬁ Z )

k
e p

— Q) + qH(2) — q (z+k)1/1(z+k—l)

pk pkl
z+k+1 )h(z + k)

=Q(2) +qH(z

w33
_ Q) + qH(2 Zz+k+1 (Z+k)—j)(z+1)1/}(2)

k

= z Z—q zZ)— zZ)— Z Z—q z
= Q(2) + qH(z) ) H(z) pQ() p?l}() p¢()
_ 9P =D ey P00 - Ly — L
=, H(z) + pQ() p¢() p¢()-
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Lemma 13. The function Q in (53) satisfies the formula

A= / Q(z)e~(P~1)=

1—gq p q
T - - )<p exp{q(l—p)/p} —1 p—q- 1+qel‘1">' (60)

Proof. We use formula (55) and integrate by parts the expression in the definition of A above. We

then obtain
— —(p—1)z Q(O) 1 /oo / —(p—1)z
B 1/ Q(z)de = 1 Q'(z)e dz

=Q£y+ ot [ wz—@l

We conclude that

- pQ(0) _ q = e~ =Dz g,
A= e oo O d

[t remains to use formulas (50) and (57).

Lemma 14. The constant c(j) in (36)—(37) admits the representation

S _ 1—¢ (1!)((172 —pq+q)exp {q(1 - p)/p} — 1)
T Ver(p - 1)2(p—q) (p exp {g(1 — p)/p} — 1)
—dﬁ_pq_1+%k?>- (61)
(p—q—1+qel~?)

Proof. By (37)and (54), we have

m_ 1 /‘”H ~(p-1)z g 62
cy Jon (z)e 2. (62)

We use equality (56) and find the integral from (62). We deduce

B:= /H —(p=Dz g,
_1/ H(z) de~ 1)z

p—oi —1/ H'(z)e”"™)% dz

_ H(0)

=17 / Q=
— a —(p-Dz g, _ q ° (p-1)z
mp—lyé zje s e p@_lyé ()e " de.

Hence, one has
B = / H(z Zdz
‘<—n< —1/ s

- v 2p(z)e” P gy — q ~ e~ @Dz g,
(p_l)(p_q)/o e ! (p—l)(p—q)/o V) a
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We take into account the representations for the integrals in Lemmas 10 and 13 and relation (58). We
find that

/°° Hz)e @ D% g — p(1—q)exp {q(1 —p)/p}
0 (p—1)(p exp {g(1 —p)/p} —1)°
n p(1—q)
(p—1)2(p—q)(p exp {q(1 —p)/p} — 1)
q(1—q)

(- 12p—q)(p—q—1+qeP)
B q(1 —q)(1 — ge'~?)
(=P —q)(p—q—1+ger)*
B q(1—q)
p-Dp—-q)(p—q—1+qe'?)
Converting positive (and then negative) fractions into fractions with the same denominator, we obtain
/OO H(z)e D7 gz — p(1 = q)((»* —pg + @) exp {g(1 — p)/p} —21)
0 (p—1)2(p —q)(p exp{g(1 —p)/p} — 1)
1= q)(p* —pg—1+ge'?)
(p—12(p—q)(p—q—1+getr)?

Taking (62) into account, we find the constant csrl).

Proof of Theorem 2. From representation (31) and asymptotic formulas (36) and (45) we obtain
the asymptotic relation

(1)

. @)
1-G*(n)~(p—q) ©

+c _
32+ e M n— .
n3/

We substitute the representations from Lemmas 11 and 14 for the constants c(+1> and cf). We find that

(»—a) (p(l —a)((P* = pg +q)exp {q(1 - p)/p} — 1)
V2r \ (p—1)2(p— q)(p exp {a(1 — p)/p} —1)*
=) (P —pa—1+ge'P)
(P—1%p—q)(p—q—1+qe'P)
(1—q)(1—qelP) >
(1—pe=P)(p—q—1+ qel—P)2 .
The sum of the last two fractions assumes the form
p(1—q)(p—q—1+qet?)" _ p(1-q)
(p—12(p—q)(1—pet ) (p—q—1+qet7)>  (P=1)>*(p—q)(1—pe'P)
We conclude that

* j—
C+_

2

*_
C+—

p(l—q) (@ —pg+q)exp{q(1—p)/p}—1 1 (63)
V2r(p — 1)2 (p exp {q(l —p)/p} — 1)2 1 —pel=p

[t remains to notice that we may replace pe! =P by ge! =4 in (63).
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