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Abstract—For many dynamical systems that are popular in applications, estimates are known for
the decay of correlation in the case of Hölder continuous functions. In the present article, we suggest
an approach that allows us to obtain estimates for correlation in dynamical systems in the case of
arbitrary functions. This approach is based on approximation and estimates are obtained with the use
of known estimates for Hölder continuous functions. We apply our approach to transitive Anosov
diffeomorphisms and derive the central limit theorem for the characteristic functions of certain sets
with boundary of zero measure.
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1. INTRODUCTION

Let (M,d) be a metric space, let μ be a Borel measure on M , and let T : M → M be a transform
that preserves the measure μ, i.e., we have μ(A) = μ(T−1A) for every Borel set A. Let 1 ≤ p, q ≤ ∞ and
let 1/p + 1/q = 1. Consider functions f ∈ Lp(M) and g ∈ Lq(M). The paired correlation coefficients(
or simply the correlation function

)
is defined by the rule

cn(f, g) =
∫

M
f(x)g(T nx) dμ(x) −

∫

M
f(x) dμ(x)

∫

M
g(x) dμ(x), n ∈ N.

A dynamical system (T, μ) is said to be mixing if we have

cn(f, g) → 0 as n → ∞ for all f, g ∈ L2(M).

An important statistical property of a dynamical system (T, μ) that characterizes its chaoticity is
quite rapid decay of the correlation function in the case of regular functions (we call them observables).
In applications, it is usual to regard H’́older continuous functions

(
or functions from an extension of this

class
)

as these regular observables. As is well known, in the case of irregular observables, the correlation
function may decay as slowly as desired. For example, as is shown in [23], for every measure preserving
mixing mapping, every numerical sequence {an} that may decrease to zero as slowly as desired, and
every nonzero function g ∈ L0

2(M), there exists a function f ∈ L2(M) such that cn(f, g) �= O(an)
as n → ∞. Moreover, such a behavior, i.e., as slow as desired decay of the correlation function, is typical
for functions in L2(M)

(
see, for example, [9]

)
.

Nevertheless, for each particular pair of observables, it is interesting to know the exact rate (even if it is
very slow) of decay of their correlation function. To the best of author’s knowledge, there are no examples
of systems with estimates for the correlation function for all observables among publications on mixing
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dynamical systems.1 Examples are known of estimates for the correlation function for observables that
are not H’́older continuous

`

see, for example, [22, 28] and the references in these articles
´

such that
the dependence of the rate of decay of the correlation function on regularity of observables is reflected
in coefficients that are similar to the modulus of continuity. The aim of the present article is to use
known estimates for regular (for example, Hölder continuous) functions and a suitable approximation
by such functions and to obtain estimates for all other observables. It turns out that the rate of decay
of the correlation function and regularity of observables are connected by the best approximation. We
mention a feature of our approach. Namely, dynamical properties of systems that influence on the decay
of the correlation function are already taken into account in estimates for regular (Hölder continuous)
observables, while the rates of decay of additional terms that arise in approximation depend on the rate
of approximation only.

1.1. Initial estimates for correlation. Let

Fp ⊆ Lp(M) and Gq ⊆ Lq(M)

be normed spaces of complex-valued functions that are defined on M . We assume that, for all f ∈ Fp,
g ∈ Gq, and n ∈ N, the following estimate for the correlation function holds:

∣∣cn(f, g)
∣∣ ≤ C(f, g)Φ(n), (1)

where C(f, g) is a nonnegative constant and Φ(n) → 0 as n → ∞. We assume that Φ depends on
the whole spaces Fp and Gq instead of particular functions f ∈ Fp and g ∈ Gq .

We consider the least possible constant C such that estimate (1) is valid. Then C possesses additional
properties. We fix a function g ∈ Lq(M). Notice that, for all a ∈ C, f1, f2 ∈ Fp, and n ∈ N, we have

cn(af1, g) = acn(f1, g), cn(f1 + f2, g) = cn(f1, g) + cn(f2, g).

Since the constant is minimal, we conclude that

C(f1 + f2, g) ≤ C(f1, g) + C(f2, g),

C(af, g) ≤ |a|C(f, g) = |a|C
(

1
a
af, g

)
≤ C(af, g).

Moreover, if f ≡ 0 then C(f, g) = 0 in the obvious way. We conclude that C = C(f, g) is a seminorm
with respect to f . Similar arguments show that C = C(f, g) is a seminorm with respect to g. In
the sequel, we assume that these seminorms are proper norms of the corresponding spaces and C admits
a representation of the form

C(f, g) = A‖f‖Fp‖g‖Gq ,

where A is a positive constant that is independent of f and g, ‖ · ‖Fp is a norm in Fp, and ‖ · ‖Gq is
a norm in Gq . In [8, Theorem B.1], sufficient conditions can be found guaranteeing that the constant C =
C(f, g) can be represented as the product of norms (up to a constant factor) in the corresponding spaces.

Thus, estimate (1) is uniform on balls of the spaces Fp and Gq and has the form
∣∣cn(f, g)

∣∣ ≤ A‖f‖Fp‖g‖GqΦ(n), n ∈ N. (2)

If inequality (2) holds then we say that the correlation function for Fp-observables with respect to
Gq-observables decays at the rate Φ.

Numerous dynamical systems are known that admit estimates for the correlation function of this
type

(
see, for example, the monograph [2]

)
. Among them, we mention classical transitive Anosov

diffeomorphisms [6] and a large class of systems admitting the Gibbs–Markov–Young structure [26, 27]
that includes several popular billiards [10].

1During the preparation of the final version, the author found article [12], where estimates are obtained for the correlation
function in the case of all L2-observables for expanding endomorphisms of a torus.
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1.2. Approximation by the spaces Fp and Gq . In the sequel, we assume that the space Fp is everywhere
dense in Lp(M) and the space Gq is everywhere dense in Lq(M). This assumption leads to the following
natural questions. Is it possible to use approximation and obtain meaningful estimates for the correlation
function for a class of functions that is wider than Fp and Gq? How the rate of their decay depends on
the rate of approximation? Is it possible to obtain estimates of the same type as in (2), i.e., with a constant
that is representable as the product of norms in the corresponding spaces? By a meaningful estimate we
mean that it allows us to derive statistical laws (for example, the central limit theorem) following [25] or
to obtain estimates for the rate of convergence in the von Neumann ergodic theorem, see [14, 17].

The idea to use approximation in estimates for the correlation function is not new. It was successfully
employed, for example, in the remarkable article [9], where approximation in L2(M) was considered for
the case in which F2 is the set of functions measurable with respect to a Markov partition of the phase
space M and G2 = F2 . Smooth approximation was used in [15] in the case of a periodic Lorentz gas
and estimates for the correlation function were constructed for the characteristic functions of sets with
rectifiable boundaries. The present article is dedicated to development of the approach from [15] in a more
general situation. One more new feature of our estimates for the correlation function is as follows. We
introduce normed approximation spaces such that the character of estimates for approximation (and, as
we will see, for the correlation function) is the same for observables in these spaces.

The best approximation serves as a parameter of approximation. For f ∈ Lp(M) and t ≥ 0, the best
approximation of order t of the function f by the class Fp is defined as follows:

τf (t) = essinf
{
‖f − h‖p : h ∈ Fp, ‖h‖Fp ≤ t

}
. (3)

The definition of the best Gq-approximation of order t of a function g ∈ Lq is similar. We denote it
by τg(t).

The article is organized as follows.
In Section 2, we formulate and prove the main result, i.e., Theorem 2.1 and its corollaries.
In Section 3, we show that the sets of functions associated with various estimates for the best

approximation form normed spaces and establish certain their properties.
In Section 4, we consider transitive Anosov diffeomorphisms as an example of application of the main

result. We show that the central limit theorem is valid for certain new observables, see Theorem 4.2.
The appendix is dedicated to Hölder approximation of the characteristic functions of sets with

boundary of zero measure. We use results from the appendix in derivation of the central limit theorem.

2. ESTIMATES FOR THE CORRELATION FUNCTION
FOR GENERAL OBSERVABLES

2.1. Formulation of the main result. We introduce sets of integrable functions that correspond to
various estimates for the best approximation. Let Ξ be the set of all functions Θ : R+ → R+ that decrease
to zero, i.e.,

Θ(t1) ≥ Θ(t2) for 0 ≤ t1 ≤ t2,

Θ(t) → 0 as t → +∞,

and let Ξ0 ⊂ Ξ be the subset of functions that eventually vanish.

Definition 2.1. For Θ ∈ Ξ, we denote by Fp(Θ) the set of all functions f ∈ Lp(M) such that, for
a suitable constant c ≥ 0, the best Fp-approximation satisfies the inequality

τf (ct) ≤ cΘ(t) (4)

for every t ≥ 0. The set of all such constants is denoted by C(Θ, f). We denote by ‖f‖Fp(Θ) the greatest
lower bound of this set, i.e.,

‖f‖Fp(Θ) = essinf
c∈C(Θ,f)

c. (5)
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In Proposition 3.3 below, we show that, for every function Θ ∈ Ξ, the set Fp(Θ) forms a normed space
with respect to the norm from (5).

The following assertion is the main result of the present article. It shows that the initial estimates
for decay of the correlation function from (2) for Fp-observables with respect to Gq-observables allow
us to obtain estimates of the same type in the case of Fp(Θ1)-observables and Gq(Θ2)-observables for
arbitrary Θ1,Θ2 ∈ Ξ. Moreover, the rate of decay in the case of new observables is explicitly represented
in terms of the rate of approximation and the rate of decay of the correlation function for Fp-observables
with respect to Gq-observables. We denote by Θ1 ∨ Θ2 the supremum of functions Θ1 and Θ2.

Theorem 2.1. Assume that the correlation function for Fp-observables with respect to Gq-
observables decays at rate Φ. Let

Θ1,Θ2 ∈ Ξ.

Then, for every pair of functions f ∈ Fp(Θ1), g ∈ Gq(Θ2), there exist a number n0 ∈ N, a con-
stant A′ > 0, and a function Φ′ with Φ′(n) ↘ 0 as n → ∞ such that, for every n ≥ n0, we have

∣
∣cn(f, g)

∣
∣ ≤ A′‖f‖Fp(Θ1)‖g‖Gq(Θ2)Φ

′(n). (6)

If Θ1 ∨ Θ2 /∈ Ξ0 then Φ′(n) = Φ(n)υ
(
Φ(n)

)
, where υ : R+ → R+ is the inverse of

1
t
(Θ1 ∨ Θ2)

(√
t
)
, t > 0,

and n0 ∈ N is the least natural number such that the inequality

Φ(n0)υ
(
Φ(n0)

)
≤ 1

holds.
If Θ1 ∨ Θ2 ∈ Ξ0 then Φ′(n) = Φ(n) and n0 = 1.
In applications, if the rate Φ of decay of the initial correlation function is either exponential or power

function then the following problem often arises: Find new observables such that the same (exponential
or power function) rate of decay is preserved, i.e., Φ′(n) = Φ(n)υ

(
Φ(n)

)
. We consider such situations.

For specific rates of decay
(
see, for example, [13]

)
, this question should be considered separately. We

leave it to the reader interested in such dynamical systems. We recall that, for nonnegative values a =
a(t) and b = b(t), the relation a(t) = O

(
b(t)

)
as t → t0 means that there exists a constant c > 0 such

that the inequality a(t) ≤ cb(t) holds in a neighborhood of t0. We put

Θ = Θ1 ∨ Θ2.

Corollary 2.1. Let the conditions of Theorem 2.1 hold with an exponential estimate for
the initial correlation function, i.e., Φ(n) = θn for a suitable θ ∈ (0, 1). Then, for all f ∈ Fp(Θ1)
and g ∈ Gq(Θ2), the following assertions are valid.

(i) If Θ(t) = O(t−β) as t → +∞ then
∣
∣cn(f, g)

∣
∣ = O(θγn) as n → +∞,

where β > 0, γ ∈ (0, 1), and β = 2γ
1−γ .

(ii) If Θ(t) logδ
θ−1

(
t2

Θ(t)

)
= O(1) as t → +∞ for a suitable δ > 0 then

∣∣cn(f, g)
∣∣ = O(n−δ) as n → +∞.

Corollary 2.2. Let the conditions of Theorem 2.1 hold with a power function estimate for
the initial correlation function, i.e., Φ(n) = n−α for a suitable α > 0. Then, for all f ∈ Fp(Θ1) and
g ∈ Gq(Θ2), the following assertion is valid.

(iii) If Θ(t) = O(t−β) as t → +∞ then
∣
∣cn(f, g)

∣
∣ = O(n−γ) as n → +∞,

where β > 0, γ ∈ (0, α), and β = 2γ
α−γ .
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Corollaries 2.1 and 2.2 allow us to claim that the result of Theorem 2.1 is meaningful. Indeed,
we widen the set of functions that admit exponential and power function estimates for the correlation
function. Moreover, on the basis of the exponential and power function estimates for cn(f, f) with new
observables

f ∈ F2(Θ1) ∩ G2(Θ2),

we obtain, with the use of [17, Theorem 7], estimates for the rate of convergence in the von Neumann
ergodic theorem for the same observables. We also obtain certain properties of the spectral measure of
f −

∫
M fdμ; namely, its behavior at zero [17, Theorem 3 and Remark 4] and an estimate for the Hausdorff

dimension of this measure [19, Proposition 3.11 and Remark 3.12]. Using estimates for the rate of
convergence in the von Neumann theorem, we may obtain estimates for the rate of convergence in
the Birkhoff theorem [17, 24].

Let G∞ = L∞(M) and F1 ⊆ L∞(M). We use exponential and power function estimates for cn(f, g),
where f ∈ F1(Θ1) and g ∈ G∞ and take into account [1, Theorem D]

(
see also [21, Theorem 1.2]

)
.

We immediately obtain the corresponding estimates for large deviations of the ergodic averages for f ∈
F1(Θ1) ∩ L∞(M). In turn, this allows us to obtain estimates for the rate of convergence in the Birkhoff
theorem [17, Theorem 13].

We present one more application of the obtained estimates (derivation of the central limit theorem for
certain new observables) at the end of the article in discussion of particular dynamical systems (transitive
Anosov diffeomorphisms).

2.2. Proofs of the main results. The following lemma shows how to take into account the quantitative
characteristics of approximation in estimates for the correlation function.

Lemma 2.1. Assume that the correlation function for Fp-observables with respect to Gq-
observables decays at rate Φ. Then, for all f ∈ Lp(M), g ∈ Lq(M), n ∈ N, and t, s ≥ 0, we have

∣
∣cn(f, g)

∣
∣ ≤ AtsΦ(n) + R(t, s), (7)

where

R(t, s) = 2
(
τf (t)‖g‖q + τg(s)‖f‖p + τf (t)τg(s)

)
(8)

and A > 0 is the same constant as in inequality (2).

Proof. Let hf ∈ Fp be an approximation of f in Lp(M) and let hg ∈ Gq be an approximation of g
in Lq(M). Simple calculations and estimate (2) show that, for every n ∈ N, we have

∣
∣cn(f, g)

∣
∣ ≤

∣
∣cn(hf , hg)

∣
∣ +

(
‖f‖p+‖hf‖p

)
‖g − hg‖q +

(
‖g‖q+‖hg‖q

)
‖f − hf‖p

≤ A‖hf‖Fp‖hg‖GqΦ(n)

+ 2
(
‖f‖p‖g − hg‖q + ‖g‖q‖f − hf‖p + ‖g − hg‖q‖f − hf‖p

)
.

We consider the infimum over all hf ∈ Fp and hg ∈ Gq such that

‖hf‖Fp ≤ t, ‖hg‖Gq ≤ s for t, s ≥ 0.

We obtain the required estimate (7).

Choosing suitable t = tn and s = sn and substituting them into (7), we may obtain satisfiable
estimates for the correlation function. It is clear that the choice of such sequences (cf. the proof of
Theorem 2.1 below) depends on the rate of approximation R(t, s).

Proof of Theorem 2.1. First we consider the case in which

Θ = Θ1 ∨ Θ2 /∈ Ξ0,

i.e., at least one of the functions Θ1, Θ2 does not eventually vanish. By the conditions of the theorem(
see Definition 2.1 and (14)

)
, we have

τf (at) ≤ aΘ1(t), τg(bt) ≤ bΘ2(t)

SIBERIAN ADVANCES IN MATHEMATICS Vol. 28 No. 3 2018
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for every t with t ≥ 0, where a = ‖f‖Fp(Θ1) and b = ‖g‖Gq(Θ2). Taking into account these inequalities
and (8), we obtain

R(at, bt) = 2
(
‖g‖qτf (at) + ‖f‖pτg(bt) + τf (at)τg(bt)

)

≤ 2
(
a‖g‖qΘ1(t) + b‖f‖pΘ2(t) + abΘ1(t)Θ2(t)

)

≤ 2
(
a‖g‖q + b‖f‖p + ab

)
(Θ1 ∨ Θ2)(t)

for every t such that t ≥ 0 and (Θ1 ∨ Θ2)(t) ≤ 1.

We denote by υ the inverse of the monotone decreasing function 1
t (Θ1 ∨ Θ2)

(√
t
)
., i.e., we put

(Θ1 ∨ Θ2)
(√

υ(s)
)

= υ(s)s, s > 0. (9)

It is clear that υ(s) → +∞ as s → +0. We consider an increasing sequence {tn} of real numbers such
that

t2n = υ
(
Φ(n)

)

for every n with n ≥ n0. The number n0 ∈ N is determined by the condition

(Θ1 ∨ Θ2)(tn0) = (Θ1 ∨ Θ2)
(√

υ
(
Φ(n0)

) )
= Φ(n0)υ

(
Φ(n0)

)
≤ 1,

where the latter equality is a consequence of representation (9). We use estimate (7) with t = atn
and s = btn and equality (9). For n ≥ n0, we obtain

∣
∣cn(f, g)

∣
∣ ≤ Aabt2nΦ(n) + R(atn, btn)

≤ Aabt2nΦ(n) + 2
(
a‖g‖q + b‖f‖p + ab

)
(Θ1 ∨ Θ2)(tn)

≤ AabΦ(n)υ
(
Φ(n)

)
+ 2

(
a‖g‖q + b‖f‖p + ab

)
(Θ1 ∨ Θ2)

(√
υ
(
Φ(n)

) )

=
(
(A + 2)ab + 2a‖g‖q + 2b‖f‖p

)
Φ(n)υ

(
Φ(n)

)
.

It remains to notice that ‖f‖p ≤ aΘ1(0) and ‖g‖q ≤ bΘ2(0), see (15). We find that

(A + 2)ab + 2a‖g‖q + 2b‖f‖p ≤ (A + 2)ab + 2abΘ2(0) + 2abΘ1(0)

=
(
A + 2 + 2Θ1(0) + 2Θ2(0)

)
ab = A′ab.

Second we consider the case in which Θ1,Θ2 ∈ Ξ0. There exist t0, s0 > 0 such that

τf

(
‖f‖Fp(Θ1)t

)
= 0, t ≥ t0,

τg

(
‖g‖Gq(Θ2)s

)
= 0, s ≥ s0;

hence, we have R(t, s) = 0 if t ≥ t0‖f‖Fp(Θ1) and s ≥ s0‖f‖Gq(Θ2). We substitute t = t0‖f‖Fp(Θ1) and
s = s0‖g‖Gq(Θ2) into estimate (7). For every n ≥ 1, we obtain

∣
∣cn(f, g)

∣
∣ ≤ At0‖f‖Fp(Θ1)s0‖g‖Gq(Θ2)Φ(n) = A′‖f‖Fp(Θ1)‖g‖Gq (Θ2)Φ(n),

which is estimate (6) with the constant A′ = At0s0 and the function υ ≡ 1.

Proofs of Corollaries 2.1 and 2.2. We prove the following equivalences:

(i) we have Θ(t) = O(t−β) as t → +∞ if and only if Φ′(n) = O(θγn) as n → +∞, where β > 0,
γ ∈ (0, 1), and β = 2γ

1−γ ;

(ii) we have Θ(t) logδ
θ−1

(
t2

Θ(t)

)
=O(1) as t→ + ∞ if and only if Φ′(n)=O(n−δ) as n→ + ∞;

(iii) we have Θ(t) = O(t−β) as t → +∞ if and only if Φ′(n) = O(n−γ) as n → +∞, where β > 0,
γ ∈ (0, α), and β = 2γ

α−γ .
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Assertions (i) and (ii) imply Corollary 2.1 and assertion (iii) implies Corollary 2.2.
We prove assertion (ii) only. The proofs of assertions (i) and (iii) are similar. Assume that, for

some δ > 0, we have

Θ(t) logδ
θ−1

(
t2

Θ(t)

)
= O(1) as t → +∞.

We consider the inverse of υ, i.e., the mapping defined by the rule υ−1(t) = Θ
(√

t
)/

t. This equality is
equivalent to the condition

tυ−1(t) logδ
θ−1

(
1

υ−1(t)

)
= O(1) as t → +∞.

We substitute t = υ(θn). Since the functions under consideration are monotone, we obtain the following
equivalent condition:

θnυ(θn) logδ
θ−1

(
1
θn

)
= O(1) as n → +∞.

Simple transformations lead to the following condition:

Φ′(n)nδ = O(1) as n → +∞.

3. APPROXIMATION SPACES Fp(Θ)
In the present section, we study certain properties of sets of the form Fp(Θ). In particular, we show

that they form normed spaces that are everywhere dense in Lp(M) and extend Fp. The reader interested
in applications of Theorem 2.1 may skip it and pass directly to Sec. 4.

3.1. Properties of the best approximation. It is obvious that, for each f ∈ Lp(M), the best Fp-
approximation τf is a function that decreases to zero and we have

τf (0) = ‖f‖p. (10)

Moreover, the function τf is continuous. Indeed, it is immediate from equality (3) that, for every pair
of numbers t ≥ 0 and ε > 0, there exist n0 = n0(t, ε) ∈ N and a sequence hn ∈ Fp with ‖hn‖Fp≤t such
that, for every n ≥ n0, we have

‖f − hn‖p − τf (t) < ε

and, consequently,

‖hn‖p ≤ ‖f‖p + τf (t) + ε ≤ 2‖f‖p + ε.

If t > 0 then, for an arbitrary δ ∈ (0, t), we have ‖hn − hnδ/t‖Fp ≤ t − δ. Taking into account this fact
and the estimates above, we obtain

τf (t) ≤ τf (t − δ) ≤ ‖f − hn − hnδ/t‖p ≤ ‖f − hn‖p +
δ

t
‖hn‖p

≤ τf (t) + ε +
δ

t

(
2‖f‖p + ε

)

for every n ≥ n0. Since ε > 0 was arbitrary, we have

τf (t) ≤ τf (t − δ) ≤ τf (t) +
2‖f‖pδ

t
(11)

for every t > 0. We substitute t + δ for t in (11). For every t ≥ 0, we obtain

τf (t) − 2‖f‖pδ

t + δ
≤ τf (t + δ) ≤ τf (t). (12)

It remains to pass to the limit as δ → 0+ in inequalities (11) and (12).
In the sequel, we will need the following property of the best approximation

(
see [3, Lemma 7.1.1.] for

a similar property
)
.
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Proposition 3.1. If t ≥ 0, a, b ∈ C, and

c = |a| + |b| �= 0

then we have

τaf1+bf2(ct) ≤ |a|τf1(t) + |b|τf2(t). (13)

Proof. Inequality (13) is immediate from the following chain of inequalities:
τaf1+bf2(ct) = essinf

{
‖af1 + bf2 − h‖p : h ∈ Fp, ‖h‖Fp ≤ ct

}

≤ essinf
{
‖af1 + bf2 − h‖p : h = ah1 + bh2, hj ∈ Fp, ‖h‖Fp ≤ ct

}

≤ essinf
{
‖af1 + bf2 − ah1 − bh2‖p : hj ∈ Fp, ‖hj‖Fp ≤ t

}

≤ essinf
{
‖af1 − ah1‖p : h1 ∈ Fp, ‖h1‖Fp ≤ t

}

+ essinf
{
‖bf2 − bh2‖p : h2 ∈ Fp, ‖h2‖Fp ≤ t

}

= |a|τf1(t) + |b|τf2(t).

3.2. Geometrical meaning of the functional ‖ · ‖Fp(Θ). In practice, it is difficult to calculate (and
even estimate) the values of the best Fp-approximation τf of an arbitrary function f ∈ Lp(M)

(
see,

for example, the classical result on approximation by integer-valued functions [3, Theorem 7.2.4]
)
. If

an estimate is known for τf of the form τf (t) ≤ Θ(t) for every t ≥ 0 then this estimate need not be optimal
in the following sense: There may be a tangible difference between the graphs of the functions τf and Θ.
In this case, we can make these graphs closer by expanding the graph of τf along the axis OX (i.e., we
pass to τf (ct)) and simultaneously contracting the graph of Θ along the axis OY (i.e., we pass to cΘ(t)).
We perform such expansion and contraction while relation (4) is preserved for all t ≥ 0. The optimal
parameter for simultaneous expansion and contraction is ‖f‖Fp(Θ). The following assertion shows that
inequality (4) holds for the constant ‖f‖Fp(Θ).

Proposition 3.2. Let f ∈ Fp(Θ), where Θ : R+ → R+ decreases to zero. Then we have

C(f,Θ) =
[
‖f‖Fp(Θ),+∞

)
. (14)

Proof. It is clear that, for the zero function, we have C(0,Θ) = R+. Let f be a nonzero function.
Since τf is monotone and continuous, we obtain

Θ(t) ≥ sup
c∈C(f,Θ)

1
c
τf (ct) =

1
‖f‖Fp(Θ)

τf

(
‖f‖Fp(Θ)t

)

for every t ≥ 0. It remains to notice that if c > ‖f‖Fp(Θ) and t ≥ 0 then we have

τf (ct) ≤ τf

(
‖f‖Fp(Θ)t

)
≤ ‖f‖Fp(Θ)Θ(t) ≤ cΘ(t).

By Proposition 3.2 and equality (10), we find that the norm ‖ · ‖p is subordinate to the norm ‖ · ‖Fp(Θ),
i.e., for every function f ∈ Fp(Θ), the following inequality holds:

‖f‖p ≤ ‖f‖Fp(Θ)Θ(0). (15)

3.3. Norm in Fp(Θ). Since the best approximation is monotone, we take property (13) into account
and conclude that Fp(Θ) is a linear space.

Proposition 3.3. Let Θ : R+ → R+ be a function that decreases to zero. Then Fp(Θ) is
a normed space with respect to the norm ‖ · ‖Fp(Θ).

Proof. We prove that Fp(Θ) is a linear space. It is clear that it contains the zero function because
τ0(t) = 0 ≤ Θ(t) for every t ≥ 0.

Let f1, f2 ∈ Fp(Θ). Then we have

τf1(c1t) ≤ c1Θ(t), τf2(c2t) ≤ c2Θ(t)
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for every t ≥ 0, where c1, c2 ≥ 0 are constants. We consider a, b ∈ C with c = |a| + |b| �= 0. Since
the best approximation is monotone and possesses property (13), we obtain

τaf1+bf2

(
c(c1 ∨ c2)t

)
≤ |a|τf1

(
(c1 ∨ c2)t

)
+ |b|τf2

(
(c1 ∨ c2)t

)

≤ |a|τf1(c1t) + |b|τf2(c2t) ≤
(
|a|c1 + |b|c2

)
Θ(t)

≤ c(c1 ∨ c2)Θ(t)

for every t ≥ 0. By definition, this means that the function af1 + bf2 belongs to the set Fp(Θ).
Thus, Fp(Θ) is a linear space. We check the properties of the norm.

It follows from inequality (15) that

‖f‖Fp(Θ) ≥
‖f‖p

Θ(0)
.

Hence, if Θ(0) �= 0 then we have ‖f‖Fp(Θ) = 0 if and only if f = 0. It is also clear that Θ(0) = 0 implies
f = 0. If f �= 0 then it follows from property (13) with b = 0 that

τaf

(
|a|ct

)
≤ |a|τf (ct) ≤ |a|cΘ(t)

for all t ≥ 0 and c ∈ C(f,Θ). We conclude that

‖af‖Fp(Θ) ≤ |a|‖f‖Fp(Θ).

The reverse inequality is a consequence of the above inequality and can be obtained by a well-known
trick:

|a|‖f‖Fp(Θ) = |a|
∥
∥∥
∥

1
a
af

∥
∥∥
∥

Fp(Θ)

≤ |a| 1
|a| ‖af‖Fp(Θ) = ‖af‖Fp(Θ).

Thus, we have proven that the norm is positive uniform. It remains to check the triangle inequality.
We again use property (13) and representation

f1 + f2 = ‖f1‖Fp(Θ)
f1

‖f1‖Fp(Θ)
+ ‖f2‖Fp(Θ)

f2

‖f2‖Fp(Θ)
.

For all t ≥ 0 and

c1 ∈ C

(
f1

‖f1‖Fp(Θ)
,Θ

)

, c2 ∈ C

(
f2

‖f2‖Fp(Θ)
,Θ

)

,

we obtain

τf1+f2

((
‖f1‖Fp(Θ) + ‖f2‖Fp(Θ)

)
(c1 ∨ c2)t

)

≤ ‖f1‖Fp(Θ)τ f1
‖f1‖Fp(Θ)

(c1t) + ‖f2‖Fp(Θ)τ f2
‖f2‖Fp(Θ)

(c2t)

≤ ‖f1‖Fp(Θ)c1Θ(t) + ‖f2‖Fp(Θ)c2Θ(t)

≤
(
‖f1‖Fp(Θ) + ‖f2‖Fp(Θ)

)
(c1 ∨ c2)Θ(t).

We conclude that

‖f1 + f2‖Fp(Θ) ≤
(
‖f1‖Fp(Θ) + ‖f2‖Fp(Θ)

)
essinf

{

c1 ∨ c2 : c1 ∈ C

(
f1

‖f1‖Fp(Θ)
,Θ

)

,

c2 ∈ C

(
f2

‖f2‖Fp(Θ)
,Θ

)}

= ‖f1‖Fp(Θ) + ‖f2‖Fp(Θ),

which is the required conclusion. This completes the proof of Proposition 3.3.
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3.4. Partial order on the family of spaces Fp(Θ) with Θ ∈ Ξ. From the proof of Proposition 3.3 it
follows that

Fp(0) = {0}.

It is also clear that

Lp(M) =
⋃

Θ∈Ξ

Fp(Θ).

Indeed, for an arbitrary function f ∈ Lp(M), we may put Θ(t) = τf (t). Then f ∈ Fp(Θ) in the obvious
way. Taking into account (15), we obtain ‖f‖Fp(Θ) = 1. Notice that from inequality (15) it follows that
the embedding Fp(Θ) ⊂ Lp(M) is continuous for every function Θ : R+ → R+ that decreases to zero.

For f ∈ Lp(M), we denote by Ξf the set of all Θ ∈ Ξ with f ∈ Fp(Θ). The following assertion shows
that it is possible to introduce a partial order on the family of the spaces Fp(Θ) with Θ ∈ Ξf . This family
lacks the greatest element. If f �≡ 0 then it also lacks the least element.

Proposition 3.4. If Θ,Θ′ ∈ Ξ and Θ′ ≤ Θ then Fp(Θ′) ⊆ Fp(Θ) and, for every f ∈ Fp(Θ′), we
have

‖f‖Fp(Θ) ≤ ‖f‖Fp(Θ′). (16)

Moreover, if 0 �≡ f ∈ Lp(M) then

essinf
Θ∈Ξf

Θ = 0, sup
Θ∈Ξf

‖f‖Fp(Θ) = +∞.

Proof. Since Θ′ ≤ Θ, we have

τf (c t) ≤ cΘ′(t) ≤ cΘ(t)

for all f ∈ Fp(Θ′), t ≥ 0, and c ∈ C(f,Θ′). Hence, we have f ∈ Fp(Θ) and inequality (16) holds.

We consider an arbitrary Θ ∈ Ξf . It is not difficult to verify that, for every ε > 0, we have Θε ∈ Ξf ,
where

Θε(t) = εΘ
(

t

ε

)
.

We conclude that

essinf
Θ∈Ξf

Θ(t) ≤ essinf
ε>0

Θε(t) = essinf
ε>0

εΘ
(

t

ε

)
= 0.

Assume that

‖f‖′ = sup
Θ∈Ξf

‖f‖Fp(Θ) < +∞

for some f ∈ Lp(M). Then, for all Θ ∈ Ξf and t ≥ 0, we have

τf

(
‖f‖′t

)
≤ τf

(
‖f‖Fp(Θ)t

)
≤ ‖f‖Fp(Θ)Θ(t) ≤ ‖f‖′pΘ(t).

We find that

τf

(
‖f‖′pt

)
≤ ‖f‖′p essinf

Θ∈Ξf

Θ(t) = 0

for every t ≥ 0. We obtain f ≡ 0, which is a contradiction. Therefore, we have ‖f‖′ = +∞.
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3.5. Everywhere density of Fp(Θ) in Lp(M). For a, b > 0, we put

Θa,b(t) = b(1 − t/a)χ[0,a)(t).

Lemma 3.1. If a, b > 0 then Fp ⊂ Fp(Θa,b).

Proof. We consider a function f ∈ Fp with f �≡ 0. It is not difficult to verify that

τf (t) ≤ ‖f‖p

(
1 − t

/
‖f‖Fp

)
χ[0,‖f‖Fp )

for every t ≥ 0. Indeed, it suffices, in the definition of τf (t), to consider the function h ∈ Fp that coincides

with f for t ≥ ‖f‖Fp and with tf
‖f‖Fp

for t < ‖f‖Fp . We put d = d(f) = ‖f‖p

‖f‖Fp
. We find that

τf

(‖f‖Fp

ε
t

)
≤

‖f‖Fp

ε

(
εd(1 − t/ε)χ[0,ε)

)

for all ε > 0 and t ≥ 0. We choose ε = min{a, b/d}. For every t ≥ 0, we have

τf

(‖f‖Fp

ε
t

)
≤

‖f‖Fp

ε

(
b(1 − t/a)χ[0,a)

)
,

which is the required conclusion. Moreover, the inequality

‖f‖Fp(Θa,b) ≤
‖f‖Fp

ε
(17)

holds for every f ∈ Fp. This completes the proof of the lemma.

Proposition 3.5. If Θ ∈ Ξ and Θ(0+) = lim
t→0+

Θ(t) > 0 then we have

Fp ⊆ Fp(Θ).

Proof. In view of Proposition 3.4 and Lemma 3.1, it suffices to prove that there exists a number
a = a(Θ) > 0 such that

Θa,a(t) ≤ Θ(t)

for every t ≥ 0. We assume the contrary, i.e., assume that, for every a > 0, there exists t0 = t0(a) > 0
such that

Θa,a(t0) > Θ(t0). (18)

By the definition of Θa,a, we have t0 ∈ [0, a). In (18), we pass to the limit as a → 0+. We find that
t0(a) → 0+ and

0 < Θ(0+) ≤ lim
a→0+

Θa,a(t0) = lim
a→0+

a − t0(a) = 0,

which is a contradiction.

The following assertion is immediate from relations (15)– (17).

Corollary 3.1. Assume that the conditions of Proposition 3.5 hold. Then there exists a number
a = a(Θ) > 0 such that, for every f ∈ Fp, we have

‖f‖Fp

Θ(0)
≤ ‖f‖Fp(Θ) ≤

‖f‖p

a
if ‖f‖p ≥ ‖f‖Fp ,

‖f‖p

Θ(0)
≤ ‖f‖Fp(Θ) ≤

‖f‖Fp

a
if ‖f‖p ≤ ‖f‖Fp .

Notice that Θ(0+) = 0 implies Fp(Θ) = {0}. Thus, the nonzero space Fp(Θ) is an extension of
the space Fp; hence, it is everywhere dense in Lp(M).
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4. TRANSITIVE ANOSOV DIFFEOMORPHISMS

In the present section, we consider a well-studied dynamical system (transitive Anosov diffeomor-
phism) and demonstrate the applications of Theorem 2.1 for deriving the central limit theorem. In
the proof, we use approximation of the characteristic functions by Hölder continuous functions (see
the appendix). We also use the notation from the appendix. For example, we denote by Hα(M) the set
of Hölder continuous functions of class α with α ∈ (0, 1), by ‖f‖α the Hölder norm, and by Höldα(f)
the Hölder constant.

We begin with known results on Anosov diffeomorphisms that will be needed in the sequel.

4.1. Initial estimates for the correlation function. Let M be a compact C∞-smooth Riemannian
manifold and let T be a C1+α-smooth transitive Anosov diffeomorphism, i.e., the differential DT is
a H’́older continuous function of class α with α ∈ (0, 1).

For an invariant measure μ we take the SRB-measure. A well known result of [5] says that, for
H’́older continuous functions, the correlation function decays at the exponential rate with respect to this
measure. This result was first obtained for mixing topological Markov chains and then transferred to
transitive Anosov diffeomorphisms with the use of methods of symbolic dynamics. It can be also proven
with the use the construction of a Young tower with an exponential tail [26]. Here we use estimates with
more precise constants which were obtained in [6] with the use of coupling methods.

Let ds = ds(x, y) be a metric on the stable manifold W s and let du = du(x, y) be a metric on
the unstable manifold W u induced by the Riemannian metric on M . There exists ν ∈ (0, 1) such that

ds(Tx, Ty) ≤ νds(x, y), x ∈ W s(y),

du(T−1x, T−1y) ≤ νdu(x, y), x ∈ W u(y).

We fix δ > 0 and β ∈ (0, 1). For a measurable function f : M → R, we consider the following semi-
norms:

‖f‖s = ‖f‖∞ + |f |s, |f |s = sup
ds(x,y)≤δ

∣∣f(x) − f(y)
∣∣

dβ
s (x, y)

,

‖f‖u = ‖f‖1 + |f |u, |f |u = sup
du(x,y)≤δ

∣
∣f(x) − f(y)

∣
∣

dα
u(x, y)

,

where the norm ‖f‖1 is taken with respect to the Riemannian volume on M. Let Cs denote the set of all
measurable functions f : M → R with ‖f‖s < ∞. It is clear that f ∈ Hβ(M) implies

‖f‖s ≤ ‖f‖β < ∞.

Similar arguments for f ∈ Hα(M) show that

‖f‖u ≤ max{‖1‖1, 1}‖f‖α < ∞.

As is proven in [6, Corollary 2.1], there exist constants 0 < ϑ < 1 and CT > 0 such that, for all
f ∈ Hα(M), g ∈ Cs, and n ∈ N, we have

∣
∣cn(f, g)

∣
∣ ≤ CT ‖f‖u‖g‖sϑ

n.

In the sequel, we consider bounded functions only. Hence, we may use a similar estimate; namely,
∣
∣cn(f, g)

∣
∣ ≤ CT max

{
‖1‖1, 1

}
‖f‖′u‖g‖sϑ

n, n ∈ N,

where

‖f‖′u = ‖f‖∞ + |f |u.

It is clear that this inequality remains valid for complex-valued functions f ∈ Hα(M) + iHα(M) and
g ∈ Cs + iCs. We introduce the same norms as for real-valued functions. Simple calculations allow us
to obtain a similar estimate; namely, we have

∣
∣cn(f, g)

∣
∣ ≤ 4CT max

{
‖1‖1, 1

}
‖f‖′u‖g‖sϑ

n, n ∈ N. (19)
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Since, for every γ ∈ (0, 1), the set of functions of the form Hγ(M) + iHγ(M) is everywhere dense
in Lp(M), 1 ≤ p < ∞, we may apply Theorem 2.1 (and Corollary 2.1) to

Fp = Hα(M) + iHα(M) with the norm ‖ · ‖′uand Gq = Cs + iCs with the norm ‖ · ‖s

for each 1 < p < ∞ with 1/p + 1/q = 1. Moreover, we have Φ(n) = ϑn.

4.2. Central limit theorem. In [25, Theorem 14], the exponential decay of the correlation function
for every (real-valued) function f ∈ Hα(M) ∩ Cs was used in the proof of validity of the central limit
theorem (CLT) for the same observables. We generalize this result to a wider class of observables;
namely, to the class of the characteristic functions of Borel sets A ⊆ M such that, in a neighborhood
of the boundary ∂A, there is a power function singularity of order l > 0, i.e.,

γA(δ) + γA(δ) ≤ CAδl (20)

for every δ > 0 and a suitable constant CA > 0. For the definition of functions γA and γA, see
formula (26) in the appendix. Let Σl denote the family of sets with boundary of zero measure that
satisfy (20). Notice that, in [20], the principle of large deviations was studied for the sequence of times of
return to a set from Σl.

Since, for every Borel set A ⊆ M , we have

γA(δ) = γM\A(δ),

we find that A ∈ Σl if and only if M \ A ∈ Σl. If M ⊆ R
N , N ≥ 1, and μ = mN is an N-dimensional

Lebesgue measure then each bounded Borel set A with rectifiable piecewise-smooth boundary belongs
to the class Σ1. A similar assertion is valid for measures μ with bounded density that are absolutely
continuous with respect to mN .

We recall the notation and facts that will be needed in the proof of the CLT. For a real-valued
function f , we denote

Sn =
n−1∑

j=0

f ◦ T j , Ef =
∫

M
f(x) dx, D Sn = E(S2

n) − E
2(Sn).

The assertion of the CLT is as follows: The distribution of the sequence (Sn − nEf)/
√

D Sn converges
to the standard normal distribution, i.e., for every v ∈ R, we have

lim
n→∞

μ

(
Sn − nEf√

D Sn
≤ v

)
=

1√
2π

∫ v

−∞
e−s2/2 ds.

The following theorem
(
see [11, Sec. 7.8; 25, Theorem 1 and Corollary 3]

)
allows us to derive the CLT

from the condition of rapid decay of the correlation function. Let 0 < b < a < 1/2 and let

p = [na], q = [nb], k =
[
n/(p + q)

]
∼ n1−a (21)

for every n ∈ N

Theorem 4.1. Let

g = e
ivf/

p

kD Sp
, w1 = g · g ◦ T · · · g ◦ T p−1.

For every 2 ≤ r ≤ k, put

wr = w1 ◦ T (p+q)(r−1), Wr = w1w2 · · ·wr−1.
If the conditions

(i)
∑∞

n=1 n
∣
∣cn(f, f)

∣
∣ < ∞,

(ii) lim
n→∞

∑k
r=2

∣∣cp+q(w1,Wr)
∣∣ = 0

hold for every v ∈ R then the CLT is valid.
On the basis of this result, we prove the following assertion.

Theorem 4.2. The CLT is valid for every transitive Anosov diffeomorphism T with an SRB-
measure μ and the characteristic function χA, where A ∈ Σl and l > 0.
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4.3. Proof of Theorem 4.2. By Theorem 4.1, it suffices to prove that conditions (i) and (ii) hold
for f = χA, where A ∈ Σl. We verify condition (i).

We put
F2 = Hα(M) + iHα(M) with the norm ‖ · ‖′uand

G2 = Cs + iCs with the norm ‖ · ‖s.

We describe spaces F2(Θ1) and G2(Θ2) containing χA. For arbitrary a, b, c > 0, we put

Θa,b,c(t) = min
{

1,
1

|t − 1|c/ab

}
, t ≥ 0.

Lemma 4.1. Let A ∈ Σl for some l > 0 and let

Θ1(t) = Θα,2,l(t), Θ2(t) = Θβ,2,l(t).

Then we have

χA ∈ F2(Θ1) ∩ G2(Θ2),

max
{
‖χA‖F2(Θ1); ‖χA‖G2(Θ2)

}
≤ max

{
1;

√
CA

}
.

Proof of Lemma 4.1. We consider the case of F2-approximations only. The case of G2-approximations
is similar. We choose a function ϕα,δ

A as in Lemma A.2 below, where δ satisfies the equality 1 + 1/δα = t
for t > 1. Then we have

1 < ‖ϕα,δ
A ‖′u ≤ ‖ϕα,δ

A ‖α ≤ 1 + 1/δα = t

and, consequently,

τχA
(t) ≤

∥∥χA − ϕα,δ
A

∥∥
2
≤ γ

1/2
A (δ) = γ

1/2
A

(
1

(t − 1)1/α

)

for every t > 1. Notice that, for t ∈
(
1, 1 + 1/δα

∗ (A)
)
, we have

γA

(
1

(t − 1)1/α

)
= μ(int A \ ∅) = μ(A),

where δ∗(A) is defined in the appendix. Moreover, we find that τχA
(0) = μ1/2(A). Since the best

approximation is continuous, we combine the above facts and conclude that

τχA
(t) ≤ min

{
μ1/2(A); γ1/2

A

(
1

|t − 1|1/α

)}
(22)

for every t ≥ 0. Taking into account (22) and (20), we obtain

τχA
(t) ≤ min

{
μ1/2(A); γ1/2

A

(
1

|t − 1|1/α

)}

≤ min

{

μ1/2(A);
C

1/2
A

|t − 1|l/2α

}

≤ max{μ1/2(A);C1/2
A }min

{
1,

1
|t − 1|l/2α

}

for every t ≥ 0. If CA ≤ 1 then

max
{
μ1/2(A);C1/2

A

}
≤ 1.

We obtain

τχA
(t) ≤ Θ1(t) for every t ≥ 0.

Hence, we have

χA ∈ F2(Θ1), ‖χA‖F2(Θ1) ≤ 1.
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If CA > 1 then

max
{
μ1/2(A);C1/2

A

}
= C

1/2
A .

We obtain

τχA
(C1/2

A t) ≤ τχA
(t) ≤ C

1/2
A Θ1(t) for every t ≥ 0.

Hence, we have

χA ∈ F2(Θ1) and ‖χA‖F2(Θ1) ≤ C
1/2
A .

By Lemma 4.1, we find that

χA ∈ F2(Θ1) ∩ G2(Θ2)and (Θ1 ∨ Θ2)(t) = O
(
t(−l)/(2(α∨β))

)
as t → +∞.

We use this asymptotic relation, estimate (19), and assertion (i) of Corollary 2.1. We obtain
∣∣cn(χA, χA)

∣∣ = O(ϑn
0 ) as n → ∞,

where

ϑ0 = ϑl/(4(α∨β)+l). (23)

Thus, condition (i) of Theorem 4.1 holds, i.e., we have
∞∑

n=1

n
∣
∣cn(χA, χA)

∣
∣ < ∞.

We verify condition (ii). Notice that

cp+q(w1,Wr) = cq(w1 ◦ T−p,Wr).

As above, we describe a space F2(Θ1) containing w1 ◦ T−p and a space G2(Θ2) containing Wr

(
see

Lemmas 4.2 and 4.3 respectively
)

.

Lemma 4.2. Let A ∈ Σl for some l > 0 and let

Θ1(t) = Θα,2,l

(
(1 − να)t

)
.

Then we have w1 ◦ T−p ∈ F2(Θ1) and

‖w1 ◦ T−p‖F2(Θ1) ≤ max
{
1, 21+1/αC

1/2
A p

}
.

Lemma 4.3. Let A ∈ Σl for some l > 0 and let

Θ2(t) = Θβ,2,l

(
(1 − νβ)t

)
.

Then Wr ∈ G2(Θ2) and

‖Wr‖G2(Θ2) ≤ max
{
1, 21+1/βC

1/2
A p(r − 1)

}
.

These lemmas, estimate (19), Theorem 2.1, Corollary 2.1, and relations (21) imply thatk∑

r=2

∣∣cq(w1 ◦ T−p,Wr)
∣∣

=
k∑

r=2

O
(
‖w1 ◦ T−p‖F2(Θ1)‖Wr‖G2(Θ2)Φ

′(q)
)

= O

(
p2Φ′(q)

k∑

r=2

(r − 1)
)

= O
(
p2k2ϑq

0

)

= O
(
n2an2−2aϑnb

0

)
= O

(
n2ϑnb

0

)
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as n → ∞, where ϑ0 is defined by equality (23). This yields condition (ii). Thus, it remains to prove
lemmas 4.2 and 4.3, which will complete the proof of Theorem 4.2.

We put

a(n, v) = e
iv/
p

kD Sp
, v ∈ R.

Then

g = e
ivχA/

p

kD Sp
= a(n, v)χA + χM\A.

Proof of Lemma 4.2. Since

w1 ◦ T−p =
p∏

j=1

g ◦ T−j,

we find the corresponding F2-approximation of the form
∏p

j=1 h ◦ T−j . Let ϕα,δ
A and ϕα,δ

M\A be as in

Lemma A.2, where δ satisfies the equality 1 + 2/δα = t for t > 1. For h = a(n, v)ϕα,δ
A + ϕα,δ

M\A, we have

1 < ‖h‖′u ≤ 1 +
∣∣ϕα,δ

A

∣∣
u

+
∣∣ϕα,δ

M\A
∣∣
u

≤ 1 + Höldα

(
ϕα,δ

A

)
+ Höldα

(
ϕα,δ

M\A
)

≤ 1 + 2/δα = t.

From the proof of [25, Corollary 13] it follows that
p∏

j=1

h ◦ T−j ∈ F2

and
∥∥
∥
∥∥
∥

p∏

j=1

h ◦ T−j

∥∥
∥
∥∥
∥

′

u

≤ 1
1 − να

‖h‖′u ≤ t

1 − να
.

For t > 1, we obtain

τw1◦T−p

(
t

1 − να

)
≤

∥∥
∥
∥∥
∥

p∏

j=1

g ◦ T−j −
p∏

j=1

h ◦ T−j

∥∥
∥
∥∥
∥

2

≤
p∑

i=1

∥
∥∥
∥∥
∥

i−1∏

j=1

g ◦ T−j

∥
∥∥
∥∥
∥
∞

‖g ◦ T−i − h ◦ T−i‖2

∥
∥∥
∥∥
∥

p∏

j=i+1

h ◦ T−j

∥
∥∥
∥∥
∥
∞

≤
p∑

i=1

‖g − h‖2 ≤ p
(∥∥χA − ϕα,δ

A

∥∥
2
+

∥∥χM\A − ϕα,δ
M\A

∥∥
2

)

≤ 2pγ
1/2
A (δ) ≤ 2pC

1/2
A δl/2 =

21+1/αC
1/2
A p

(t − 1)l/2α
.

Since τw1◦T−p(0) ≤ 1, for every t ≥ 0, we obtain

τw1◦T−p(t) ≤ min

{

1;
21+1/αC

1/2
A p

∣
∣(1 − να)t − 1

∣
∣l/2α

}

≤ max
{
1; 21+1/αC

1/2
A p

}
Θα,2,l

(
(1 − να)t

)
.
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Proof of Lemma 4.3. Notice that

Wr =
r−2∏

j=0

(
p−1∏

i=0

g ◦ T i

)

◦ T j(p+q) =
r−2∏

j=0

p−1∏

i=0

g ◦ T i+j(p+q);

hence, we find G2-approximation of the same form, i.e.,

r−2∏

j=0

p−1∏

i=0

h ◦ T i+j(p+q).

As in the proof of Lemma 4.2, we put

h = a(n, v)ϕβ,δ
A + ϕβ,δ

M\A with δ > 0

satisfying the equality 1 + 2/δβ = t for t > 1. Then we have

1 < ‖h‖s ≤ 1 +
∣
∣ϕβ,δ

A

∣
∣
s
+

∣
∣ϕβ,δ

M\A
∣
∣
s

≤ 1 + Höldβ

(
ϕβ,δ

A

)
+ Höldβ

(
ϕβ,δ

M\A
)

≤ 1 + 2/δβ = t.

From the proof of [25, Corollary 13] it follows that

r−2∏

j=0

p−1∏

i=0

h ◦ T i+j(p+q) ∈ G2

and
∥
∥∥
∥∥
∥

r−1∏

j=1

p−1∏

i=0

h ◦ T i+j(p+q)

∥
∥∥
∥∥
∥

s

≤ 1
1 − νβ

‖h‖s ≤ t

1 − νβ
.

For every t > 1, we repeat calculations that are similar to those in the proof of Lemma 4.2 and obtain

τWr

(
t

1 − νβ

)
≤ 21+1/βC

1/2
A p(r − 1)

(t − 1)l/2β
.

The remaining part of the proof is the same as the corresponding part of the proof of Lemma 4.2.

APPENDIX. HÖLDER APPROXIMATION OF THE CHARACTERISTIC
FUNCTIONS OF CONTINUITY SETS

For many dynamical systems, estimates for the correlation function are obtained for classes of regular
observables that contain the class of H’́older continuous functions. Therefore, it is useful to distinguish
a class of functions such that observables in this class admit good Hölder approximations. In the present
article, the following class Xμ serves as an example of such a class. We put

Xμ =
{
χA : μ(∂A) = 0

}
,

i.e., the characteristic function χA of a Borel set A ⊆ M belongs to Xμ if the measure of the boundary ∂A
of A is equal to zero. Sometimes such sets are called continuity sets of the measure μ. Functions in Xμ

are μ-almost everywhere continuous because the measure of the set of discontinuity points of χA (i.e.,
the boundary ∂A of A) is equal to zero. For μ-almost everywhere continuous functions, two-sided
integral Hölder approximation is known which can be used, for example, in estimates for large deviations
of the ergodic averages

(
see [16, 18]

)
. In the present article, we use a more convenient construction. For

the characteristic functions in Xμ, we consider the construction of two-sided Hölder approximation that
involves neither supremal nor infimal convolutions, cf. [18].

We present auxiliary facts and then turn to the main result of the section.
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A.1. Hölder continuous observables. We recall that f : M → R is a H’́older continuous function if
there exist constants α ∈ (0, 1] and h ≥ 0 such that, for all x, y ∈ M , we have

∣
∣f(x) − f(y)

∣
∣ ≤ hdα(x, y).

We denote by Höldα(f) the least such a constant h for f . We denote by Hα(M) the set of bounded
Hölder continuous functions of class α with α∈ (0, 1]. The norm in Hα(M) is defined by the rule

‖f‖α = ‖f‖∞ + Höldα(f).

We consider a general construction that allows us to construct Hölder continuous functions on M .

Lemma A.1. Let σ : R
+ → R be an arbitrary Hölder continuous function of class α with α ∈

(0, 1] and let ∅ �= A ⊆ M . Then, for all h > 0 and β ∈ (0, 1], the function σh,A,β, where
σh,A,β(x) = σ

(
h · dβ(x,A)

)
, x ∈ M,

is a Hölder continuous function of class αβ with αβ ∈ (0, 1]; moreover, we have

Höldαβ(σh,A,β) ≤ hαHöldα(σ). (24)

Proof. For every β ∈ (0, 1], the function dβ is a metric on M too. Therefore, is suffices to prove
the assertion for β = 1.

For all x, y ∈ M , we have
∣∣σh,A,1(x) − σh,A,1(y)

∣∣ =
∣
∣∣σ

(
h · d(x,A)

)
− σ

(
h · d(y,A)

)∣∣∣

≤ Höldα(σ)
∣∣h · d(x,A) − h · d(y,A)

∣∣α

= Höldα(σ)hα
∣
∣d(x,A) − d(y,A)

∣
∣α

≤ Höldα(σ)hαdα(x, y).

A.2. Extensions and restrictions of sets. Let A⊆M and let A be a nonempty set. We put

(A)δ =
{
x ∈ M : d(x,A) < δ

}
, δ > 0,

and call this set the open δ-extension of A. We put

(A)δ =
{
x ∈ A : d(x, ∂A) ≥ δ)

}
, δ > 0,

and call this set the closed δ-restriction of A. For definiteness, we assume that (∅)δ = (∅)δ = ∅ for
each δ > 0. It is clear from the definition that

(A)δ = (intA)δ ⊆ intA ⊆ A ⊆ clA ⊆ (clA)δ = (A)δ .

Moreover, the following equalities are valid
(
see, for example, [7, Sec. 2]

)
:

(A)δ = M \ (M \ A)δ , (A)δ = M \ (M \ A)δ . (25)

It is not difficult to see that, for a nonempty set A ⊆ M , we have (A)δ = ∅ for every δ > δ∗(A), where

δ∗(A) = sup
x∈A

d(x, ∂A).

It is also clear that (A)δ = M for every δ > δ∗(A), where

δ∗(A) = sup
x∈M

d(x,A).

In connection with extensions and restrictions, we consider concentration of the measure near
the boundary. For every Borel set A ⊆ M , we consider functions γA and γA from R

+ to [0, 1]. They
are defined by the equalities

γA(δ) = μ(intA \ (A)δ), γA(δ) = μ((A)δ \ clA) (26)

for all δ > 0. It is clear that γA(δ), γA(δ) → 0+ as δ → 0+.
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A.3. Two-sided Hölder approximation for functions in Xμ. We use δ-extensions and δ-restrictions of
a set A and construct Hölder continuous functions that approximate the characteristic function χA. We
control over the growth of their Hölder constants as δ converges to zero.

Lemma A.2. Let (M,d) be a metric space and let ∅ �= A ⊂ M . For all δ > 0 and α ∈ (0, 1], there
exist Hölder continuous functions

ϕα,δ
A , ψα,δ

A ∈ Hα(M)
such that

0 ≤ ϕα,δ
A ≤ χA ≤ ψα,δ

A ≤ 1, (27)

{ψα,δ
A �= 0} = (A)δ , {ψα,δ

A = 1} = cl A, (28)

{ϕα,δ
A �= 0} = int A, {ϕα,δ

A = 1} = (A)δ, (29)

Höldα(ϕα,δ
A ) ≤ δ−α, Höldα(ψα,δ

A ) ≤ δ−α; (30)

moreover, for every p ∈ [1,+∞), the following inequalities hold:
∥
∥χA − ϕα,δ

A

∥
∥p

p
≤ γA(δ) + μ(∂A),

∥
∥χA − ψα,δ

A

∥
∥p

p
≤ γA(δ) + μ(∂A). (31)

Proof. We follow the well-known construction from [4, Theorem 1.2]. We consider the function σ :
R

+ → R, where

σ(t) =

{
1 − t, t ∈ [0, 1],
0, t > 1.

It is easy to verify that this is a Hölder continuous function. Indeed, for all α ∈ (0, 1] and t, s ≥ 0, we
have ∣

∣σ(t) − σ(s)
∣
∣ ≤ |t − s|α.

For α ∈ (0, 1] and δ > 0, we put

ψα,δ
A = σ1/δ,A,1, (32)

ϕα,δ
A = 1 − σ1/δ,M\A,1, (33)

where σ1/δ,A,1 and σ1/δ,M\A,1 are constructed from σ as in Lemma A.1. Since the functions are
independent of α, we omit such subscripts and superscripts in the sequel. We prove equality (28). We
use the following equivalences:

ψδ
A(x) = 0 ⇔ d(x,A) ≥ δ ⇔ x �∈ (A)δ ,

ψδ
A(x) = 1 ⇔ d(x,A) = 0 ⇔ x ∈ cl A.

We use similar relations in the proof of (29):

ϕδ
A(x) = 0 ⇔ d(x,M \ A) = 0 ⇔ x ∈ cl (M \ A) ⇔ x /∈ int A,

ϕδ
A(x) = 1 ⇔ d(x,M \ A) ≥ δ ⇔ x /∈ (M \ A)δ ⇔ x ∈ (A)δ .

In the last relation, we use property (25). Since 0 ≤ σ ≤ 1, it is obvious that (28) and (29) imply (27).
Inequality (30) for Hölder constants is exactly inequality (24) for the functions σ1/δ,A,1 and σ1/δ,M\A,1.
Estimates (31) are immediate from (26)–(29). We present the corresponding calculations, for example,
for ϕδ(x):

∥∥χA − ϕδ
A

∥∥p

p
=

∫

A

(
χA − ϕδ

A

)p
dμ

=
∫

∂A

(
1 − ϕδ

A

)p
dμ +

∫

int A

(
1 − ϕδ

A

)p
dμ

= μ(∂A) +
∫

int A\(A)δ

(
1 − ϕδ

A

)p
dμ

≤ μ(∂A) + γA(δ).
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