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1. INTRODUCTION

The main result of the present article is a new method for solving systems of stochastic differential
equations (SDEs) with the help of a finite chain of systems of ordinary differential equations (ODEs).
This method was first found by the author for 1-dimensional SDEs and their pathwise versions, see [3, 4](
a more detailed exposition can be also found in [5]

)
. The essence of this method is as follows. We

consider a 1-dimensional SDE

dη(t) = b
(
t, η(t),W (t)

)
dt + σ

(
t, η(t)

)
∗ dW (t), η(0) = η0,

with the Stratonovich integral with respect to a Wiener process W (t). We find a solution of the form
η(t) = φ

(
t,W (t) + C(t)

)
, where φ is a deterministic function and C is a smooth predictable function.

Moreover, we find the function φ from the ODE φ′
u = σ(t, φ) and the function C from the ODE

C ′(t) =
b
(
t, φ

(
t,W (t) + C(t)

)
,W (t)

)
− φ′

t(t, u)
∣∣
∣
u=W (t)+C(t)

σ
(
t, φ

(
t,W (t) + C(t)

))

with a stochastic right-hand side. The initial condition has the form φ
(
0,W (0) + C(0)

)
= η0.

It turns out that a version of this method can be applied to parabolic and hyperbolic stochastic partial
differential equations with a 1-dimensional Wiener process. Notice that, in [5], only empirical arguments
(with no justification of the method) are presented on construction of solutions of systems of SDEs with
the help of chains of ODEs.

It is important that our construction allows us to describe the structure of solutions of a system of
SDEs. Namely, solutions of systems of SDEs are deterministic functions of a multidimensional Wiener
process and smooth adapted stochastic functions. The latter functions are solutions of a normal systems
of ODEs such that Wiener processes occur on the right-hand sides. This provides us with a new tool for
studying certain problems of stochastic analysis.

No general method for solving systems of SDEs was previously known. Usually, the solutions were
constructed by “guessing” with the help of the Itô formula. Sometimes, this was preceded by a stochastic
change of the time variable or a drift removal transform, i.e., an application of the Girsanov theorem. On
the other hand, there are examples of construction of solutions for SDEs by solving ODEs that arise
during the construction, see [2, Ch. IV]. In [7], a method is found for constructing solutions for a certain
class of systems of SDEs by solving related systems of total differential equations.
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2. MAIN RESULTS

1. We consider a d-dimensional Wiener process

W (t) =
(
W1(t), . . . ,Wd(t)

)

on a filtered probability space
(
Ω, F, (Ft)t≥0P

)
. Consider a system of SDEs with the stochastic

Stratonovich integrals of the form
{

ηi(t) = η0
i +

∫ t

0
Bi

(
s, η(s),W (s)

)
ds

+
d∑

j=1

∫ t

0
σij

(
s, η(s)

)
∗ dWj(s), i = 1, 2, . . . , n, (1)

where η(s) =
(
η1(s), . . . , ηn(s)

)
.

In the sequel, we assume that the coefficients Bi(t, η, x) and σij(t, η) are presented by deterministic
functions unless explicitly stated otherwise. The fact that system (1) is considered together with
the Stratonovich integrals is not essential. Indeed, a well-known transform allows us to rewrite such
a system into a system of SDEs with the Itô integrals and vice versa.

We denote

W [k](t, vk) =
(
W1(t), . . . ,Wk−1(t), vk,Wk+1(t), . . . ,Wd(t)

)
,

where the subscript [k] means that the kth coordinate Wk(t) of the vector W (t) is replaced by
the variable vk. Let UW (t) be a neighborhood of the point v∗ = W (t). Our method for solving systems of
SDEs is based on the following assertion.

Theorem 1. Let
σik(t, η), k = 1, 2, . . . , d, i = 1, 2, . . . , n,

Bi(t, η, v̄), i = 1, 2, . . . , n,

be continuously differentiable functions. Assume that, for t ∈ [0, T ] and v ∈ UW (t), the compo-

nents of the vector-valued function ϕ(t, v) =
(
ϕ1(t, v), . . . , ϕn(t, v)

)
are continuously differen-

tiable with respect to all arguments and satisfy the following finite chain of relations :
{

(ϕi)′v1

(
t,W [1](t, v1)

)
= σi1

(
t, ϕ

(
t,W [1](t, v1)

))
, i = 1, 2, . . . , n, (2)

· · ·
{

(
ϕi

)′
vk

(
t,W [k](t, vk)

)
= σik

(
t, ϕ

(
t,W [k](t, vk)

))
, i = 1, 2, . . . , n, (3)

· · ·
{

(ϕi)′vd

(
t,W [d](t, vd)

)
= σid

(
t, ϕ

(
t,W [d](t, vd)

))
, i = 1, 2, . . . , n, (4)

{

(ϕi)′t(t, v)
∣
∣∣
{vj=Wj(t),j=1,2,...,d}

= Bi
(
t, ϕ

(
t,W (t)

)
,W (t)

)
,

ϕi

(
0,W (0)

)
= η0

i , i = 1, 2, . . . , n. (5)

Then the function

η(t) =
(
η1(t), . . . , ηn(t)

)
= ϕ

(
t,W (t)

)
, t ∈ [0, T ], W (t) ∈ R

d,

is a solution of the Cauchy problem (1).

SIBERIAN ADVANCES IN MATHEMATICS Vol. 27 No. 3 2017



SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS 189

Proof. Let ϕ satisfy the relations (2)–(5). For each component of ϕ
(
t,W (t)

)
, we apply the formula

for the Itô differential with the Stratonovich integral. We obtain

dϕi

(
t,W (t)

)
=

∑

k

(ϕi)′vk

(
t,W (t)

)
∗ dWk(t) + (ϕi)′t

(
t,W (t)

)
dt, i = 1, 2, . . . , n.

Taking into account the relations (2)–(5), we conclude that ϕ
(
t,W (t)

)
is a solution of the Cauchy

problem (1).

Remark. Below, we show that the relations (2)–(5) are reduced to a chain of systems of ODEs in
certain “good cases.” In the sequel, we call these relations chain (2)–(5) of systems of ODEs.

The first questions on a system of SDEs are the questions on the existence and uniqueness of
a solution. Therefore, it is natural to assume that the following conditions hold.

(A) The functions Bi(t, η, x) and σij(t, η), where t ∈ [0, T ], η ∈ R
n, x ∈ R

d, i = 1, 2, . . . , n, and
j = 1, 2, . . . , d, are jointly continuous with respect to all variables and satisfy the Lipschitz
conditions and the following linear growth condition with respect to η: There exists N > 0 such
that, for every t and all values η1 and η2 of the variable η, the inequalities

∣∣Bi(t, η1, x) − Bi(t, η2, x)
∣∣ ≤ N |η1 − η2| ,∣

∣σij(t, η1) − σij(t, η2)
∣
∣ ≤ N |η1 − η2| ,

∣∣Bi(t, η, x)
∣∣2 ≤ N

(
1 + |η|2

)
,

∣
∣σij(t, η)

∣
∣2 ≤ N

(
1 + |η|2

)

hold for all i = 1, 2, . . . , n and j = 1, 2, . . . , d.
(B) Each column of the “diffusion matrix”

{
σij(t, η)

}
, i = 1, 2, . . . , n, j = 1, 2, . . . , d,

contains an element that is separated from zero.

(C) The functions σij and Bi are twice continuously differentiable with respect to η.

2. The problem naturally arises on finding solutions of system (1) and describing their structure.
Together with chain (2)–(5) of ODEs, we consider finite chains of systems of the form

{

(ϕi)′v1
(t, v) = σi1

(
t, ϕ(t, v)

)
, i = 1, 2, . . . , n, (6)

· · ·{

(ϕi)′vk
(t, v) = σik

(
t, ϕ(t, v)

)
, i = 1, 2, . . . , n, (7)

· · ·{

(ϕi)′vd
(t, v) = σid

(
t, ϕ(t, v)

)
, i = 1, 2, . . . , n, (8)

{
(ϕi)′t(t, v̄)

∣
∣∣
{vj=Wj(t),j=1,2,...,d}

= Bi
(
t, ϕ

(
t,W (t)

)
,W (t)

)
,

ϕi

(
0,W (0)

)
= η0

i , i = 1, 2, . . . , n,

(9)

where each ϕi is a sufficiently smooth function. Moreover, we assume that, for every t, each of these
relations (except for the last one) holds in some neighborhood of the point W (t).

We first present two remarks on ODEs
(
see [6, pp. 267–268; 1, pp. 160–161]

)
that will be needed in

the sequel. Then we turn to solving systems of SDEs.
(a) Consider an autonomous system of ODEs

{
x′

k(v) = Hk(x1, . . . , xm), k = 1, 2, . . . ,m. (10)
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190 NASYROV

We assume that each function Hk on the right-hand side is continuous and satisfies the Lipschitz
conditions with respect to the variables x1, . . . , xm. Hence, there exists a unique solution of system (10).
Assume that one of these functions

(
say, H1

)
is a nonzero function. We reduce the system to the form

dxk

dx1
=

Hk(x1, . . . , xm)
H1(x1, . . . , xm)

, k = 2, . . . ,m,
dx1

H1(x1, . . . , xm)
= dv. (11)

Let xk = x∗
k(x1, C2, . . . , Cm), k = 2, . . . ,m, be the general solution of the subsystem of (11) which

consists of the former m − 1 equations. We substitute each xk into the latter equation and obtain

x1 = x∗
1(v + C1, C2, . . . , Cm);

hence, we have

xk = x∗
k

(
x∗

1(v + C1, C2, . . . , Cm), C2, . . . , Cm

)

= xk(v + C1, C2, . . . , Cm), k = 2, . . . ,m.

(b) We again consider system (10) of ODEs. Assume that each function on the right-hand side is
continuous and the partial derivatives ∂Hk

∂xj
are continuous in some domain G. Let xk(v,C1, C2, . . . , Cm)

be the general solution of system (10). Then the partial derivatives ∂xk
∂Cj

exist and are continuous in

the domain G; moreover, the determinant of the matrix
{

∂xk
∂Cj

}
is not equal to zero.

In the sequel, we always assume that, for a fixed value of t, the values of v1, . . . , vd belong to
a neighborhood of the point W (t). Thus, the problem on finding solutions of system (1) of SDEs reduces
to construction of ϕ and application of Theorem 1. The general scheme for finding solutions of systems of
SDEs is as follows. With the help of chain (6)–(9), we consecutively revise the form of the functions ϕ.
We transform each of systems (6)–(9) to a normal system of ODEs. Solving the entire chain of systems
of ODEs, we completely describe ϕ(t, v).

We consider system (6) as an autonomous system of ODEs with respect to the variable v1 and regard
the other variables as parameters. Taking into account Remark (a), we find the general solution ϕi of
the system

ϕi(t, v) = ϕi(t, v1 + C
(1)
1 , C

(1)
2 , . . . , C(1)

n ), i = 1, 2, . . . , n, (12)

of ODEs, where C
(1)
1 , . . . , C

(1)
n are arbitrary functions of the variables

t, v2, . . . , vd, i.e., C
(1)
j = C

(1)
j (t, v2, . . . , vd).

We substitute functions (12) into the subsequent system of ODEs in the chain. Taking derivatives with

respect to v2, we obtain the following system of linear equations with respect to (C(1)
j )′v2

:
{

(ϕk)′v2
= (ϕk)′

C
(1)
1

(
C

(1)
1

)′
v2

+ · · · + (ϕk)′
C

(1)
n

(
C(1)

n

)′
v2

= σk2, k = 1, 2, . . . , n. (13)

By Remark (b), the matrix
{
(ϕk)′

C
(1)
l

}
is nonsingular. Hence, there exists a unique solution of sys-

tem (13). Moreover, this solution can be found with the help of Cramer’s rule. We obtain
{(

C
(1)
k )′v2

= Ψ(1)
k

(
t, C

(1)
1 , C

(1)
2 , . . . , C(1)

n

)
, k = 1, 2, . . . , n, (14)

where each function Ψ(1)
k is known. There exists a unique solution of system (14) if, for example, the par-

tial derivatives of each function Ψ(1)
k are continuously differentiable. Since the functions of the form Ψ(1)

k
are found with the help of Cramer’s rule, it suffices to require that the second partial derivatives of
each function ϕk be continuously differentiable. This conditions holds if each function σij is twice
continuously differentiable (i.e., under our assumptions). In view of our assumptions on the diffusion
matrix, system (13) cannot be a homogeneous system of linear equations; hence, the solution of (13)
cannot be trivial.
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Notice that system (14) is again an autonomous system of ODEs with respect to the variable v2 (we

assume that the other variables are fixed). Recall that there is a nonzero function of the form Ψ(1)
k . Let,

for example, Ψ(1)
2 be such a function. By Remark (a), the general solution of system (14) has the form

{
C

(1)
k = C

(1)
k

(
t, v2 + C

(2)
1 , C

(2)
2 , . . . , C(2)

n

)
, k = 1, 2, . . . , n, (15)

where each C
(2)
k is an unknown function of the variables t, v3, . . . , vd.

We use the subsequent equation in the chain and differentiate with respect to v3. We obtain

the following system of linear equations with respect to
(
C

(2)
j

)′
v3

:
{

(ϕk)′v3
=

n∑

l=1

[
n∑

m=1

(ϕk)′
C

(1)
m

(
C(1)

m

)′
C

(2)
l

]
(
C

(2)
l

)′
v3

= σk3, k = 1, 2, . . . , n. (16)

It is convenient to pass to the matrix notation. We denote

A2 =
{
a

(2)
ij

}
, where a

(2)
ij = (ϕi)′

C
(1)
j

, i, j = 1, . . . , n.

For m = 2, . . . , d, we introduce the Jacobians

Dm−1,m =
{
d
(m)
ij

}
, where d

(m)
ij =

(
C

(m−1)
i

)′
C

(m)
j

, i, j = 1, . . . , n,

and define column matrices

Cm =
{
c
(m)
i

}
, Bm =

{
b
(m)
i

}
,

where

c
(m)
i =

(
C

(m−1)
i

)′
vm

, b
(m)
i = σim, i = 1, . . . , n.

Put

Am = A2D1,2 . . . ,Dm−2,m−1, m = 3, . . . , d.

We rewrite system (16) in the matrix form as follows: A3C3 = B3. By Remark (b), the matrices Aj ,
j = 2, 3, are nonsingular; hence, there exists a unique solution of system (16). Notice that this solution

is nontrivial. We again obtain an autonomous system of ODEs with respect to
(
C

(2)
j

)′
v3

, j = 2, . . . , n. In
view of our assumptions, it is possible to solve this system by the method from Remark (р).

We continue this process. For k = d, we obtain a system of linear equations whose matrix form is as
follows:

AdCd = Bd;

moreover, the matrix Ad is nonsingular in view of Remark (b). We solve this system of linear equations

and the corresponding autonomous systems of ODEs. We find the unknown functions C
(d−1)
i (t, vd) up

to a tuple of arbitrary constants

C (d)(t) =
(
C

(d)
1 (t), . . . , C(d)

n (t)
)

that depend on the variable t. Notice that the functions ϕi regarded as functions of the variables t, v,
and C (d) are deterministic.

We use the latter relation in (9) and arguments that are similar to those presented above. We

obtain the Cauchy problem for a normal system of ODEs with respect to C
(d)
i (t), i = 1, . . . , n. Since

the expressions on the right-hand sides of the ODEs depend on realizations of the Wiener process,

the solution of the normal system of ODEs is formed by stochastic functions C
(d)
i . Moreover, the initial

conditions ηi(t) = η0
i for the initial SDE are reduced to the initial conditions for the stochastic adapted

functions C
(d)
j (t) = C

(d)
j (t, ω), j = 1, . . . , n.

SIBERIAN ADVANCES IN MATHEMATICS Vol. 27 No. 3 2017
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Thus, we have constructed the functions ϕi, i = 1, . . . , n, with the help of chain (6)–(9). Hence,
the solution of the initial system of SDEs has the form

ηi(t) = ϕi

(
t,W (t)

)
, i = 1, . . . , n,

and is a deterministic vector-valued function of the Wiener process W (t) and smooth stochastic adapted
functions C (d).

We present a series of remarks.
Remarks. (a) The method for solving systems of SDEs presented above is a “pathwise” method.

Therefore, it can be modified for solving systems of SDEs with stochastic coefficients Bi = Bi(t, η, x, ω)
and σij = σij(t, η, ω) in an obvious way.

(b) We may solve a system of SDEs with the help of a chain of ODEs using a different order of steps.
Then we may obtain a solution in a different form. However, if there exists a unique solution of the initial
system of SDEs then the probability that all constructed solutions coincide is equal to 1.

(c) We have constructed solutions of (1) under conditions (A)–(C). These conditions can be
weakened. Indeed, the problem on existence (but not uniqueness!) of a solution of (1) reduces, in fact,
to two problems: on the existence of solutions of each constructed system of linear equations and on
the existence of solutions of each normal chain of ODEs above. As is known, the latter problem is solved
with the help of a version of the Peano theorem (for a normal system of ODEs) which only requires that
the functions on the right-hand sides of the equations be continuous.

(d) The problem on numerical simulation of solutions of systems of SDEs is essentially simplified.
Indeed, this problem is reduced to solving (by analytical or numerical methods) a chain of normal
systems of ODEs, where only the latter one contains a realization of a Wiener process on the right-
hand side. Therefore, for constructing a numerical model of a solution of a system of SDEs, it suffices to
construct a model of a Wiener process. The latter problem is quite simple.

3. We present an example. We consider the following system of SDEs:

{
dη1(t) = σ11 ∗ dW1(t) + σ12 ∗ dW2(t) + B1 dt,

dη2(t) = σ21 ∗ dW1(t) + σ22 ∗ dW2(t) + B2 dt,

ηi(0) = xi, i = 1, 2, (17)

where σij = σij
(
t, η1(t), η2(t)

)
, i, j = 1, 2, and Bi = Bi

(
t,W1(t),W2(t), η1(t), η2(t)

)
, i = 1, 2. We in-

troduce certain restrictions. Namely, we assume that

σ11 �= 0, σ12 �= 0, Δ = σ11σ22 − σ12σ21 �= 0. (18)

The case in which Δ = 0 is mentioned below. We find a solution of system (17) of the form ηi(t) =
ϕi

(
t,W1(t),W2(t)

)
, i = 1, 2.

STEP 1. The first system of ODEs in the chain is

{
(ϕ1)′v1

(t, v1, v2) = σ11
(
t, ϕ1(t, v1, v2), ϕ2(t, v1, v2)

)
,

(ϕ2)′v1
(t, v1, v2) = σ21

(
t, ϕ1(t, v1, v2), ϕ2(t, v1, v2)

)
.

(19)

Taking into account assumptions (18), we rewrite this system in the following form:

dϕ2

dϕ1
=

σ21(t, ϕ1, ϕ2)
σ11(t, ϕ1, ϕ2)

, dv1 =
dϕ1

σ11(t, ϕ1, ϕ2)
, (20)

where t and v2 are regarded as parameters. We integrate the first equation. Since the expression on

the right-hand side of the equation is independent of v1, we obtain ϕ2 = ϕ̂2

(
t, ϕ1, C

(1)
2 (t, v2)

)
. We

substitute ϕ2 into the second equation. We obtain a separable differential equation. By the implicit
function theorem, the solution can be represented in the form

ϕ1 = ϕ∗
1

(
t, v1 + C

(1)
1 (t, v2), C

(1)
2 (t, v2)

)
. (21)

SIBERIAN ADVANCES IN MATHEMATICS Vol. 27 No. 3 2017
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We substitute ϕ1 into the expression for ϕ2. We obtain

ϕ2 = ϕ̂2

(
t, ϕ1, C

(1)
2 (t, v2)

)

= ϕ̂2

(
t, ϕ∗

1

(
t, v1 + C

(1)
1 (t, v2), C

(1)
2 (t, v2)

)
, C

(1)
2 (t, v2)

)
. (22)

Thus, integrating the first equation in the chain, we have described the functions ϕ1 and ϕ2 up to

functions C
(1)
1 and C

(1)
2 . It remains to describe the latter functions.

STEP 2. We clarify the form of C
(1)
1 and C

(1)
2 . We use the following relation from chain (6)–(9) of

ODEs:

{
(ϕ1)′v2

(t, v1, v2) = σ12
(
t, ϕ1(t, v1, v2), ϕ2(t, v1, v2)

)
,

(ϕ2)′v2
(t, v1, v2) = σ22

(
t, ϕ1(t, v1, v2), ϕ2(t, v1, v2)

)
.

(23)

We find the derivatives on the right-hand sides of (23). Taking into account (19) and (20), we obtain

(ϕ1)′v2
= (ϕ∗

1)
′
v1

(
t, v1 + C

(1)
1 (t, v2), C

(1)
2 (t, v2)

)(
C

(1)
1

)′
v2

(t, v2)

+ (ϕ∗
1)

′
C

(1)
2

(
t, v1 + C

(1)
1 (t, v2), C

(1)
2 (t, v2)

)(
C

(1)
2

)′
v2

(t, v2)

= σ11
(
t, ϕ1(t, v1, v2), ϕ2(t, v1, v2)

)(
C

(1)
1

)′
v2

(t, v2)

+ (ϕ∗
1)

′
C

(1)
2

(
t, v1 + C

(1)
1 (t, v2), C

(1)
2 (t, v2)

)(
C

(1)
2

)′
v2

(t, v2),

(ϕ2)′v2
= (ϕ̂2)′ϕ1

(
t, ϕ∗

1

(
t, v1 + C

(1)
1 (t, v2), C

(1)
2 (t, v2)

)
, C

(1)
2 (t, v2)

)

× (ϕ∗
1)

′
v2

(
t, v1 + C

(1)
1 (t, v2), C

(1)
2 (t, v2)

)

+ (ϕ̂2)′
C

(1)
2

(
t, ϕ∗

1

(
t, v1+C

(1)
1 (t, v2), C

(1)
2 (t, v2)

)
, C

(1)
2 (t, v2)

)(
C

(1)
2

)′
v2

(t, v2)

=
σ21

(
t, ϕ1(t, v1, v2), ϕ̂2(t, v1, v2)

)
σ12

(
t, ϕ1(t, v1, v2), ϕ̂2(t, v1, v2)

)

σ11
(
t, ϕ1(t, v1, v2), ϕ̂2(t, v1, v2)

)

+ (ϕ̂2)′
C

(1)
2

(
t, ϕ∗

1

(
t, v1+C

(1)
1 (t, v2), C

(1)
2 (t, v2)

)
, C

(1)
2 (t, v2)

)(
C

(1)
2

)′
v2

(t, v2).

We substitute these derivatives into (23). We obtain the following system of linear equations with respect

to
(
C

(1)
1

)′
v2

and
(
C

(1)
2

)′
v2

:

{
(ϕ∗

1)
′
v1

(
C

(1)
1

)′
v2

+ (ϕ∗
1)

′
C

(1)
2

(C2)′v2
= σ12,

(ϕ̂2)′
C

(1)
2

(
C

(1)
2

)′
v2

=
Δ
σ11

.
(24)

Since (ϕ̂2)′
C

(1)
2

�= 0, there exists a unique solution of system (24); namely, we have

(
C

(1)
1

)′
v2

=
σ12

σ11
−

(ϕ∗
1)

′
C

(1)
2

Δ

(ϕ̂2)′
C

(1)
2

(σ11)2
,

(
C

(1)
2

)′
v2

=
Δ

σ11(ϕ̂2)′
C

(1)
2

.

(25)
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As above
(
cf. solution of system (19)

)
, we rewrite (25) as follows:

dC
(1)
2

dC
(1)
1

=
σ11Δ

σ11σ12(ϕ̂2)′
C

(1)
2

− (ϕ∗
1)

′
C

(1)
2

Δ
,

dv2 =
(ϕ̂2)′

C
(1)
2

(σ11)2dC
(1)
1

σ11σ12(ϕ̂2)′
C

(1)
2

− (ϕ∗
1)

′
C

(1)
2

Δ
.

(26)

The general solution of system (26) has the form

C
(1)
1 = C

(1)
1

(
t, v2 + C

(2)
1 , C

(2)
2

)
,

C
(1)
2 = Ĉ

(1)
2

(
t, C

(1)
1

(
t, v2 + C

(2)
1 , C

(2)
2

)
, C

(2)
2

)
,

(27)

where C
(2)
1 and C

(2)
2 are unknown functions. Thus, we have obtained the functions ϕ1 and ϕ2 of

the form (21) and (22), where the functions C
(1)
1 and C

(1)
2 are determined by formulas (27).

STEP 3. We find C
(2)
1 and C

(2)
2 . We use the latter system of ODEs in (9). We calculate the partial

derivatives and replace the variables v1 and v2 by the values W1(t) and W2(t) of the Wiener process. We

obtain the following system of linear equations with respect to (C(2)
1 )′ and (C(2)

2 )′:
{

A11(C
(2)
1 )′ + A12(C

(2)
2 )′ = B

(1)
1 ,

A21(C
(2)
1 )′ + A22(C

(2)
2 )′ = B

(1)
2 ,

(28)

where

A11 = (ϕ∗
1)

′
v1

(
C

(1)
1

)′
v2

+(ϕ∗
1)

′
C

(1)
2

(
Ĉ

(1)
2

)′
C

(1)
1

(
C

(1)
1

)′
C

(2)
1

+
(
ϕ∗

1

)′
C

(1)
2

(
Ĉ

(1)
2

)′
C

(1)
1

(
C

(1)
1

)′
C

(2)
1

,

A12 = (ϕ∗
1)

′
v1

(
C

(1)
1

)′
C

(2)
2

+ (ϕ∗
1)

′
C

(1)
2

(
Ĉ

(1)
2

)′
C

(1)
1

(
C

(1)
1

)′
C

(2)
2

,

B
(1)
1 = B1 − (ϕ∗

1)
′
t − (ϕ∗

1)
′
v1

(
C

(1)
1

)′
t
− (ϕ∗

1)
′
C

(1)
2

(
Ĉ

(1)
2

)′
t
− (ϕ∗

1)
′
C

(1)
2

(
Ĉ

(1)
2

)′
C

(1)
1

(
C

(1)
1

)′
t
,

A21 =
(
ϕ̂2

)′
ϕ∗

1
A11 +

(
ϕ̂2

)′
C

(1)
2

(
Ĉ

(1)
2

)′
C

(1)
1

(
C

(1)
1

)′
C

(2)
1

+
(
ϕ̂2

)′
C

(1)
2

(
Ĉ

(1)
2

)′
C

(2)
1

,

A22 =
(
ϕ̂2

)′
ϕ∗

1
A12 +

(
ϕ̂2

)′
C

(1)
2

(
Ĉ

(1)
2

)′
C

(1)
1

(
C

(1)
1

)′
C

(2)
2

,

B
(1)
2 = B2 −

(
ϕ̂2

)′
ϕ1

B1 −
(
ϕ̂2

)′
t
−

(
ϕ̂2

)′
C

(1)
2

(
Ĉ

(1)
2

)′
t
−

(
ϕ̂2

)′
C

(1)
2

(
Ĉ

(1)
2

)′
C

(1)
1

(
C

(1)
1

)′
t
.

Solving system (28) of linear equations, we obtain the Cauchy problem for C
(2)
1 and C

(2)
2 ; moreover,

the initial conditions have the form

ϕ∗
1

(
0,W1(0) + C

(1)
1

(
0,W2(0)

)
, C

(1)
2

(
0,W2(0)

))
= x1,

ϕ2 = ϕ̂2

(
0, x1, C

(1)
2

(
0,W2(0)

))
= x2,

where

C
(1)
1

(
0,W2(0)

)
= C

(1)
1

(
0,W2(0) + C

(2)
1 (0), C(2)

2 (0)
)
,

C
(1)
2

(
0,W2(0)

)
= Ĉ

(1)
2

(
0, C(1)

1

(
0,W2(0) + C

(2)
1 (0), C(2)

2 (0)
)
, C

(2)
2 (0)

)
.

Remark. Let Δ = 0, i.e., assume that the “diffusion matrix” is singular. Then equations (25) have
the form

(
C

(1)
1

)′
v2

=
σ12

σ11
,

(
C

(1)
2

)′
v2

= 0.

Hence, the function C2 is “degenerate,” i.e., it is independent of v2

(
we have C2(t, v2) = C2(t)

)
.
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