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Abstract—A systematic study of the effect of energy dissipation on critical nonconservative loads
within the stability calculation is carried out. Some classical nonconservative elastic stability problems
are considered: the stability of a linear form of equilibrium of a double pendulum under the action of
a follower force, the stability of a cantilever beam compressed by a follower force (Beck’s problem),
and the stability of a f lat panel in a supersonic gas f low. The dependences of critical loads on the damp-
ing parameters are built, and the conditions of mechanical system stabilization and destabilization are
determined for the cases when damping coefficients vary over a wide range and for various ratios. The
external and internal frictions (according to the Voigt model) are considered for the distributed param-
eter systems. Conclusions about the effect of various types of energy dissipation on the critical values
of nonconservative load parameters and about the conditions of nonconservative system destabiliza-
tion due to the energy dissipation are formulated.
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INTRODUCTION
E.L. Nikolai was the first to find in his studies of stability [1] that, at critical values of some loads,

mechanical systems had no adjacent equilibrium positions, so that their initially stable starting equilib-
rium position changed to an oscillatory motion. This occurs under the action of nonconservative loads
and requires applying the dynamic study of stability [2]. Hydro- and aerodynamic forces, reactive forces,
forces acting on turbine rotors and electrical machines, etc., are not conservative, so when they reach crit-
ical values, they can be a source of energy inflow under oscillatory motions of the system. This corre-
sponds to a f lutter-type loss by the system of stability of the starting equilibrium position through oscilla-
tions. A special class of problems, namely, nonconservative problems of elastic stability theory, was set in
the mechanical system of stability theory, in addition to the Euler approach to the stability investigation
of construction elements. At present, a lot of nonconservative stability problems [2–8] have been solved,
and the stability of many types of mechanical systems subjected to complicated loading with various
forces, including nonconservative, has been studied. Many features of nonconservative systems are not
typical for systems loaded with potential forces. These are the possibility of stability loss of the divergence
type or f lutter type; the nonconvexity of the stability area, if it is built in the load parameter space; and the
significant interaction of different forms of oscillations.

The specific feature that is most interesting and hard to explain of nonconservative problems of the
elastic stability theory is the destabilizing influence of damping on the critical load values [7–16]. Indeed,
the increase in the energy dissipation in dynamic systems under vibrational, shock, parametric, and sim-
ilar loads renders a positive influence on the indicators of mechanical reliability. In the problems of con-
struction and machine component stability under the action of nonconservative positional forces, the
account of damping, which is rather small in some cases, can reduce considerably the critical load param-
eters. This feature, termed the Ziegler paradox, was first formulated in [7].

Since the Ziegler paradox was discovered, many papers have been published, in which the authors tried
to explain the destabilizing influence of dissipative forces on the critical values of some nonconservative
loads [8–16]. These explanations are quite diverse concerning both the level of their conclusive force and
the level of understanding. Most often, studies of this kind are reduced to demonstrating the dependences
of critical load values on the values of energy dissipation in nonconservative systems of different origin
thereby confirming the Ziegler paradox.
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This paper presents a systematic investigation of the influence of damping on the critical values of load
parameters for some traditional nonconservative problems of the elastic stability theory, in particular, a
double pendulum under the action of a follower load, Beck’s problem (a cantilever bar with distributed
parameters under the action of a follower force), and the f lutter of a f lat plate in a supersonic gas f low.

DOUBLE PENDULUM
First of all, we examine the Ziegler pendulum, i.e., a double pendulum carrying the lumped masses 

and , which moves within one plane. The pendulum is under the action of the follower force . We
investigate the stability of the linear form of equilibrium, when elastic joints with the stiffness coefficients

 and  are not loaded. In addition, the joint rotations are accompanied by energy dissipation with the
coefficients  and . We accept the angles of deviation  and  of the inertia-free bars from the linear
form as the generalized coordinates. We can write the linearized equations of perturbed motion of the sys-
tem relative to the angular displacement vector  in the following form

(1)
where the following denotations are accepted:

In Eq. (1), it is assumed that , ,  and the following dimensionless
parameters are introduced:

In view of our goal to study the dependence of the critical value of the follower force parameter  on

the energy dissipation parameters, we present vector  in the form , where  is the character-
istic parameter determining the behavior of the system after initial perturbations. According to Lyapunov’s
theory, the system is stable if . The pattern of the loss of stability is determined by the intersec-
tion of characteristic indicators with the imaginary axis when they enter the right half-plane. In the prob-
lems considered, when the load attains a critical value, the characteristic indicators with nonzero imagi-
nary parts pass to the right half-plane. Hence, the loss of stability is of the oscillatory, f lutter type. In view
of (1) for indicators , we obtain the following equation

(2)

The critical value  from Eq. (2) can be obtained either by solving the equation directly or by finding
the least root of the principal minor of the Hurwitz matrix. Some results of the study of the dependence
of the critical value of the follower force parameter on the damping parameters are presented in Fig. 1.

The quasi-critical value of the follower force  calculated without taking damping into account, with
zero matrix , is . When friction is vanishingly small but identical at each joint,
i.e., , the critical value decreases to . This is essentially the Ziegler paradox. When
damping grows, but the condition  holds, no destabilizing influence of friction on the system sta-
bility is observed [8], and the dependence curve  (dotted curves in Fig. 1) monotonically increases
at . This fact does not mean that the quasi-critical value of the follower force is not implemented
at all. The irregularity of the damping distribution over the degrees of freedom brings a wide variety into
the  curves. In Fig. 1a, fixed values of the energy dissipation in the second joint (  and

) are rather small but still reduce  considerably. Further, the curves  increase in different
ways depending on the value of .

At fixed values of the energy dissipation at the first joint (  and ) and at  (Fig. 1b),
the quasi-critical value of the follower force  is implemented. Further, while  grows, the curves 
can decrease, as happens at , or behave nonmonotonically ( ), and even attain a minimum.
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Fig. 1. Dependence of the critical force on damping coefficients: (a)  in the first joint; (b)  in the second joint. 
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This minimum can be explained by the behavior of the characteristic indicators. Here , one of the char-
acteristic indicators, crosses the imaginary axis several times.

BECK’S PROBLEM

Now we consider a distributed parameter system. Among the linear models of energy dissipation, we
consider the external friction proportional to the velocity of transition of points of an elastic system, and
the internal friction in a material according to the Voigt model. Let us consider the known Beck problem
(compression of a linear cantilever bar by a follower force). Assuming the standard denotations, we can
write the equation of perturbed motion in the following form:

(3)

where  and  are the coefficients of the internal (Voigt model) and external friction, respectively. The
boundary conditions can be written as

(4)

Using dimensionless parameters

(5)

we rewrite Eq. (3) and boundary conditions (4) in the following form:

(6)

(7)

The homogeneous boundary problem (6) and (7) can be solved by different methods. For example, by
direct integration of Eq. (6) using the f lutter condition, the critical value of the follower force parameter
can be found by reducing the problem to the optimization problem [6]. Another way is to reduce the dis-
tributed system to the finite-dimensional system [2]. One of these methods is the finite element method
or the method of expansion of the solution  of Eq. (6) in terms of an orthogonal system of functions.
In order to find the solution to this problem as a system of such functions, we can write the following equa-
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Fig. 2. Influence of (a) the external friction  and (b) the internal friction  on the critical values of the follower force. 
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tion, assuming that the forms of natural oscillations of the cantilever bar  satisfy boundary condi-
tions (7)

(8)

Substituting this expression into Eq. (6) and applying the Bubnov–Galerkin method, we obtain a sys-
tem of ordinary differential equations with respect to the generalized coordinates . The matrix form
of these equations can be written as

(9)

Matrices , C, and  with the dimensions  included in Eq. (9) are calculated by the formulas

(10)

Having represented the generalized coordinate vector by the characteristic indices  in the form of
, we obtain the matrix equation of type (2)

where the following denotations are used

The results of investigation of the dependence of the critical value of the follower force on the damping
parameters are presented in Fig. 2.

Many papers show that the quasi-critical value of Beck’s problem obtained in the absence of any
damping is . The dashed line in Fig. 2a show the dependence of the critical value of the fol-
lower force on the internal friction coefficient  in the absence of external friction . The

assumed initial value of  is . This curve increases monotonically; but the strongly pronounced effect
of the destabilizing influence of the interior friction is exhibited in that this curve originates from the value

, i.e., at  and , so that the critical value of the follower force is almost half the size of the
quasi-critical value. The dashed line corresponds to the proportional growth of both the internal friction
in the range  and the external friction with the relation .

Proceeding from the value , the curve  also increases monotonically. The curves 
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, and  are assumed. These curves originate near the quasi-critical value ; they have an
isolated minimum and render a destabilizing influence on the bar stability in a certain range.

In Fig. 2b, the dependences of the critical value of the follower force on the external friction  are
presented in the range of  at different fixed values of the internal friction. The analysis of Fig. 2
shows that destabilization takes place only at small values of the internal friction.

If the internal friction is zero , the critical values of the follower force increase. However, this
dependence (in Fig. 2b, it is shown for comparison by the dashed line) is not strong, since, when  varies
from 0 to 2, the critical force parameter changes from its quasi-critical value  to ,
i.e., by only 1.05%.

STABILITY OF THE PLATE
Below we consider the f lutter of a f lat plate in a gas f low. At high supersonic velocities, the perturbed

pressure  on the plate can be determined by the following approximate formula:

where  is the unperturbed pressure;  is the gas density;  is the velocity of the oncoming f low; and 
is the sound velocity. The expression in brackets on the right side of the equation is a transverse compo-
nent of velocity of the particles of gas that f lows around the oscillating plate. As described in many papers,
we consider an elastic f lat board (plate) with thickness , which is supported by joints on every side, at

 and , elongated in the direction orthogonal to the f low. This enables us to assume that the state
of cylindrical bending is implemented in the plate, and that the normal f lexure of the plate  can be
considered as a function of only the coordinate  and the time .

The plate is in a supersonic gas f low with the unperturbed velocity  directed along the axis . We
assume, for simplification, that the internal and external unperturbed pressures are equal, and write the
oscillations equation for the plate in the form of

(11)

Here  is the cylindrical rigidity of the plate,  is the mass of the plate per unit area, and  is the vis-
coelasticity coefficient for the Voigt model.

Let us write Eq. (11) in dimensionless form

where the following dimensionless parameters are introduced

(12)

Here  is the first eigenfrequency of the plate supported at the edges by joints under cylindrical bend-
ing;  is the dimensionless coefficient of internal friction; and  is the dimensionless coefficient of aero-
dynamic friction.

The method of expansion in terms of natural oscillation modes was also applied to solve the problem.
In this case, the equation of the perturbed motion with respect to the generalized coordinates can be writ-
ten as

(13)
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Fig. 3. Dependence of the plate f lutter velocity on (a) the internal friction and (b) the external friction. 
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Thus, we have the following equation for the characteristic quantities:

In Fig. 3a, the dependences of the critical velocity of the plate f lutter on the internal friction are shown
at different values of the coefficient of aerodynamic friction . Monotonic growth of the critical velocity
takes place only in the case of  (dotted curve). If the aerodynamic friction is nonzero, the depen-
dence  has an isolated minimum near . Destabilization occurs when internal friction is
introduced into the system (Fig. 3b).

CONCLUSIONS
Hence, the influence of damping on critical values is quite diverse. For systems with a finite number

of degrees of freedom, the critical values of nonconservative loads and the destabilization phenomenon
depend greatly on the dissipation distribution over the degrees of freedom, while for the distributed sys-
tems, the nature of energy dissipation is determinative. The results of the studies can be applied in engi-
neering stability calculations of mechanical systems and the design of modern technological objects.
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