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Abstract—A method for calculating the natural oscillations of a cylindrical shell of an orthotropic
material is proposed. The shell is stiffened by a set of sufficiently densely positioned transverse-longi-
tudinal ribs, the arrangement of which allows “smearing” and contains sparsely positioned discrete
stiffening rings. The shell may have a closed or open cross section; it is considered to be loaded by
external pressure and axial forces. The problem is reduced to a set of homogeneous algebraic equations
the number of which is equal to twice the number of discrete ribs; the equation was obtained in explicit
form. The comparison of the calculated and experimental data is provided.
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Let us consider a reinforced shell (panel) that represents a cylindrical casing stiffened by discretely
positioned ribs. We represent the casing in the form of an orthotropic (manufactured of a composite mate-
rial) shell reinforced by a set of transverse-longitudinal ribs positioned sufficiently densely. The reinforce-
ment system is considered to be positioned asymmetrically with respect to the middle surface of the cas-
ing. The influence of the stiffening ribs on the shear and twist of the middle surface of the casing is not
taken into consideration. It is assumed that the deformation of the reinforcement is described by the rela-
tions of the linear stressed state without considering their interaction.

We take the middle surface of the shell as the coordinate surface and consider that for densely posi-
tioned ribs the “smearing” hypothesis is true. Then, the densely positioned reinforcing elements can be
represented in the form of an orthotropic layer characterized by some finite tension–compression moduli,
Poisson’s zero ratios, and the zero shear modulus.

We consider the discretely positioned ribs in the contact definition. When setting up the stability and
free-oscillation equations, a shell stiffened by discretely positioned ribs is divided into its constituent
members. The shell and the discrete ribs are considered separately. The shell and the ribs are loaded by
the distributed contact loads that act along the shell–rib contact band. The distributed contact load is
replaced by a linear load reduced to the centerline of the contact band. The interaction between the shell
and ribs manifests itself through the conditions of the displacement compatibility and stress equilibrium
at the shell–rib contact points.

Let us assume that, between the shell and the ribs, force factors of the contact interaction occur that
lie on the ribs’ planes (the resistance of the ribs upon deformation out of their plane are not taken into
account); this assumption is made when considering problems of this type. When solving the problem, the
boundary conditions of the hinge support are used.

Given the above assumptions, the equations of free oscillations of a shell that represents a casing fab-
ricated of an orthotropic material, stiffened by a set of densely positioned transverse-longitudinal ribs and
discretely positioned ribs, and loaded by external pressure and axial forces can be presented in the form [1]
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where  are the differential operators presented below; u, , and w are the components of the displace-
ment of the middle surface points;  is the delta function; Rx and Ry are the coordinates in the axial

and circumferential directions; m is the number of discrete ring ribs;  is the Kronecker symbol;  are
ordinary differential operators that contain the parameters of the discrete ring ribs and terms with the
initial force  in the rib; R and h are the radius and thickness of the shell;  is the contact line
between the shell and the qth discrete ring rib; E1 is the elastic modulus of the shell in the axial direc-
tion;  and  are Poisson’s factors in the axial and circumferential directions; ; and

.

We take into consideration that for an orthotropic shell there exists dependence [2]  = , where
E2 is the elastic modulus of the shell in the circumferential direction.

According to the theory of shallow orthotropic cylindrical shells, if the smearing hypothesis holds true
for a set of densely positioned transverse-longitudinal ribs [3], the operators  that contain the terms
with the values of the external pressure p and the axial compressive stress q can be written in the form

, ,

here

The subscript  refers to densely positioned longitudinal ribs; the subscript t = 2 refers to the trans-
verse ribs; is the eccentricity of the rib, the distance from the center of mass of the rib section to the
shell’s middle surface relative to the shell radius, which, in the case of inner ribs, it is a positive quantity;
mt is the number of ribs; ; ; l is the dimensionless shell length; Rl is the shell length; Et, Ft, and
It are the elastic modulus, the cross-sectional area, and the intrinsic moment of inertia of the rib section;

and  are the densities of the shell and rib;  is time; and  is the size of the panel over the arch (for
a closed cylindrical shell, ).
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If the cross section of the discrete ring rib  has a symmetry axis that passes normally to the shell
through the reduced contact point, the operators  have the following form:

where  and  is the area and the central moment of inertia of the rib section;  is the elastic modulus
of the rib;  is the dimensionless eccentricity of the rib similar to ; and  is the initial axial force in the
discrete ring rib.

When the shell (panel) is between parallel rigid plates, the subcritical momentless stresses in the shell

under an axial compressive load are determined from the relation , where

Q is an external axial compressive force.
The solution for a hinge-supported shell (a panel the longitudinal edges of which are freely supported)

is found in the form

where  is the ring’s natural-oscillation frequency and n is the parameter of the wave formation in the cir-
cumferential direction.

Then, for functions f1, f2, and f3, we obtain the equations

(2)

Here,  are ordinary differential operators over the variable x; ; and  (k = 1, 2, 3) are con-
stants that have the forms

  is the frequency in hertz; and 
For the case of a hinge-supported shell, the solution of Eqs. (2) obtained by the operator method [4]

can be written in the form

(3)

where  is the determinant the elements ckr of which are obtained from the operators  by replacing
the differentiation operation by the transformation parameter s;  is an algebraic complement to the ele-
ment ckr; and  are the roots of the equation .

The expressions for ckr have the following form:
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Table 1. Geometric characteristics of shells and ribs

Shell number Shell number h, cm Cross-sectional height
of rib, cm

Cross-sectional width
of rib, cm

1 0.070 – –
2 0.095 0.5 0.37
3 0.087 0.5 0.37

Table 2. Comparison of calculated and experimental data

n

Shell no. 1 Shell no. 2 Shell no. 3

, Hz , Hz , Hz , Hz , Hz , Hz

2 362 – – 351 324 1.08 349 291 1.20
3 199 245 0.81 251 250 1.00 233 236 0.99
4 144 174 0.83 317 348 0.91 263 267 0.98
5 158 162 0.9 366 – – 318 – –
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Assuming successively that in Eqs. (3)  we obtain a system of 2q homogeneous alge-
braic equations with respect to  and  The characteristic equation is obtained from the conditions of
the determinant of this system being equal to zero.

For identical equally loaded and uniformly positioned discrete ribs, the quantities  do not depend

on the number of the discrete rib; therefore, below, the subscript  is omitted and .

We seek a solution to system (3) in the form , , ,
where a and b are constants and N is an integer that characterizes the oscillation mode; we obtain the char-
acteristic equation as follows:

where

The characteristic equation solved with respect to the f lexural rigidity of a discrete rib in the dimen-
sionless form has the form

(4)

where

Equation (4) is a closed expression and allows determining the free-oscillation frequency of a rein-
forced shell (panel) loaded by external pressure and axial forces.

Prescribing different integer values on n and N, where , we find the value of the stiffness
of a discrete rib that corresponds to a specific oscillation frequency of the shell. And vice versa, this fre-
quency will correspond to the found stiffness of the rib.
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To confirm the possibility of using the obtained data to calculate real structures, the calculated and
experimental data on the oscillations of model shells were compared.

A shell manufactured of fiberglass had the following mechanical characteristics: E1 = 1.76 ×
1010 N/m2; E2 = 2.74 × 1010 N/m2; G = 9.46 ×109 N/m2; ν1 = 0.12; ν2 = 0.187; and  = 1.9 g/cm3.

Three shells were tested, one of which was smooth and two shells were reinforced in the midsection by
an internal ring rib. The ribs manufactured of the D16-A5 material (ASM AA2024) had the following
mechanical characteristics:  = 6.66 × 1010 N/m2 and  = 2.78 g/cm3.

The geometric characteristics of the shells and ribs are presented in Table 1.
In the calculations according to Eq. (4), the initial force in the ribs was assumed to be zero. The cal-

culated natural oscillation frequencies  and the experimental natural oscillation frequencies  for dif-
ferent wave formation parameters n in the circumferential direction for the first oscillation mode (N = 1)
are presented in Table 2. It can be seen that the maximum divergence between the calculated and experi-
mental data does not exceed 20%. There is satisfactory agreement between the calculated and experimen-
tal data; consequently, the proposed method can be used in the calculation in practice.
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