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Abstract—The physical and mechanical behavior of titanium nickelide coil springs of different stiffness
is experimentally investigated during thermal cycling through martensitic transformation ranges under
a constant tensile force. The springs exhibit a reversible length change by reciprocating movements.
In terms of classical mechanics, a method for the design calculation of springs with shape memory as
actuators is proposed for a given stiffness range.
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A coil spring is a traditional and well-studied form of the operating element of devices. Springs made
of structural materials are considered as elastic bodies for the accumulation of energy under the action of
a load and capable of converting the accumulated energy in a reversible form after the termination of the
load. The spring, as an integral part, is used in a variety of mechanisms to excite motion because of reverse
motion, measurement of loads, and damping of shocks and impacts. The existing theoretical models of
structural springs are well developed and based on the plane section method. They also assume that in the
case of spring deformation the displacements are small, the turn inclination angle does not exceed 12°, and
the spring diameter barely changes [1—4]. Under such assumptions, only the torque is important among
the cross-sectional forces. The longitudinal and transverse forces, as well as the bending moment, are
neglected. According to the developed methods for calculating the structural spring elements, the tables
Parameters of springs are compiled, in which the optimal geometric parameters of the springs of certain
classes are given in the range of the planned loads. Therefore, the design calculation algorithm is the selec-
tion of the spring according to the given initial data: the load, working stroke, and preliminary external
diameter. Further, according to the determined class and discharge of the spring, its stiffness is found and
the remaining dimensions of the attachment are calculated.

The functions fulfilled by alloys through shape memory can be extended due to the unique properties
of the materials themselves. The possibilities alloys with shape memory are due to the shape memory
effect (SME) observed in them, which is the restoration of a predetermined deformation upon subsequent
heating. The restored deformation can reach up to ~10%. If we limit the restoration of the shape of the
deformed material, then reactive stresses of 600—700 MPa arise. The phase yield strength of alloys with
shape memory in the martensitic state corresponds to approximately 80—100 MPa [5]. Due to these
unique properties, alloys with shape memory are used in actuators, automatic sensors, switches, control-
lers, etc. The prospects for the use of coil springs made from alloys with shape memory continue to attract
interest in the development of methods and approaches to calculate such structures [6—10].

The behavior of springs under the action of tensile forces is as follows. Under the action of the torque
created by the tensile force, twisting and bending moments acting in the vertical plane occur in the cross
sections of the spring’s flexible rod [1—4]. The specified internal force factors ensure the action of shear
and normal stresses in the cross sections of the spring, in the direction of which the plasticity of the
direct transformation occurs [1]; i.e., martensite crystals grow toward internal microforces. Subsequent
heating through the inverse martensitic transformation range leads to the inverse process, i.e., the SME
in the opposite direction. At the same time, the deformation process upon heating occurs with strict
adherence to the crystal’s geometric principle “exactly backward,” theoretically grounded by Professor
V.A. Likhachev at Leningrad State University, and his students in [11]. It follows from [11] that in terms
of energy the reverse transformation is more advantageous, when the distortions during heating are equal
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to the distortions of the direct transformations. In this case, the boundaries of the twins and the orienta-
tion variants of martensite are not inherited by austenite. The crystal’s noted geometric principle “exactly
backward” provides a complete deformation relief in the case of a reverse transformation. Obviously, this
is true when the values of the effective stresses are small and do not exceed the value of the phase yield
strength.

Coil springs made of alloys with shape memory feature a change in the number of active turns, the turn
diameter, the turn inclination angle, and the shear modulus of the material during a deformation by a con-
stant axial load under changing temperatures. The existing calculation methods usually take into account
a change in one or two factors, and do not make it possible to carry out a design calculation of a spring
made from an alloy with shape memory.

The purpose of this investigation is to develop a method for designing springs with a shape memory
used as actuators of power units. The following problems are solved in the paper: the experimental study
of the deformation-force behavior of springs with shape memory of different stiffnesses and the develop-
ment of an algorithm for the design calculation of springs with shape memory as actuators of power units.

EXPERIMENTAL

In the experiments we used coil spiral springs made of an equiatomic TiNi wire with a diameter of d =
2 mm. For this material, the temperatures of the martensitic transformations are M; = 323 K, M,= 303 K,
Ag = 328 K, and A, = 348 K. The production method of springs and the experimental procedure are
described in detail in [12, 13]. Two springs with different initial operating parameters were tested: with the
outer diameter D, of the turn in the spring and the spring index C = (D, — d)/d ; and with the initial num-
ber of turns #n, and stiffness c. Spring 1 parameters: D, =27 mm, C = 12.5, ny =22, ¢ = 174.55 N/m. Spring
2 parameters: Dy =20 mm, C=9, n, =23, ¢ = 447.31 N/m.

The initial spring stiffness was determined by the following formula:

_Gd*  _ Gd
c= 3 30
8(Dy—d)' n 8Cn

where G is the shear modulus of titanium nickelide in the martensitic state. According to [5], it is
G =30 GPa.

The experiments were carried out as follows. The spring was heated to a temperature 7,,,, = 363 K, and
then in the austenite state, it was loaded by tensile force P; = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5 N.
Then, the spring was cooled through the full martensitic transformation range to a temperature of 7.,;, =
297 K and subsequently heated. In the course of the thermal cycle, the temperature 7 was measured by
the chromel-copel thermocouple fixed to the spring, as well as the spring elongation 8(7, P;) correspond-
ing to it and the load. The experiments carried out by the described scheme were repeated thrice for each
spring. The average value of the elongation & was taken as the main experimental parameter. The error was
measured in accordance with the rules for processing direct measurements using Student’s test. The bias

was Ady;,, = 1 mm, the random error was calculated as AS .y = #,,x \/Z ©;, - 5)2 /(N(N —1)), where Stu-
N

dent’s coefficient was taken as 7, , = 2.92 for the confidence probability p = 0.9 and the number of exper-

iments N = 3. The maximum value of the random error under such parameters was Ad.,., = 2.3 mm, and
the total error did not exceed 17%.

According to the experimental procedure considered in [12, 13], the spring was subjected to isothermal
deformation in austenite at the initial loading stage, then it was stretched due to the plasticity of the direct
transformation during cooling under load. At the first stage of loading by the tensile force in the austenitic

rand

state at T, = 363 K, the spring’s compression 8" was determined by the axial force and the spring’s
parameters (Table 1). For example, spring 1 under a load of 4 N was stretched in austenite by 64% and the
compression of spring 2 was 29%. The experimental data were processed by the methods of correlation

and regression analysis. The coefficient of linear correlation of the dependence P = f(SA /l,) was 0.98—
0.99, which indicated the elastic deformation of the springs in austenite. This conclusion is confirmed by
[14], in which it was experimentally shown that in the austenitic phase the linear region of the force—rel-
ative deformation dependence of the spring can reach 200%.
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Table 1. Dependence of elongation of springs under load in austenite &1 and maximum elongation during cooling
under load & from applied tensile force

Spring no. 1 Spring no. 2

P, N
&, % 5, % 8", % 5, %
1.0 6.82 340.91 2.78 71.74
1.5 15.91 615.91 6.94 100.00
2.0 22.73 875.00 13.89 217.39
2.5 34.09 1118.18 16.67 278.26
3.0 47.73 1411.36 20.83 395.65
3.5 56.82 1625.00 26.39 469.57
4.0 63.64 1813.64 29.17 573.91
4.5 77.27 1959.09 34.72 669.57

After the loading stage, the springs were cooled under the applied axial tensile force. For spring 1,
which is the least stiff spring, the ratio of the maximum elongation accumulated during the transformation
plasticity stage to the initial length of the undeformed spring under a load of 4.5 N is more than 1900%.
For spring 2, it is 670%. Table 1 shows the values of the greatest relative elongation of the springs at the
cooling stage under the axial tension force. It can be seen that the change in the length of the TiNi spring
during thermal cycling in the loaded state through the austenitic—martensitic transformation range is sig-
nificant even under small tensile forces. Despite such a significant elongation, the deformation due to the
transformation plasticity was almost completely restored on subsequent heating under load due to the

SME.

Figure 1 shows the change in the average elongation & for spring 1 during thermal cycling under the
action of the axial load without taking into account the spring’s compression during the isothermal load-
ing stage. The relative elongation of the spring during the cooling stage under the load for an axial force
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Fig. 1. Spring elongation & during thermal cycling under load (tensile force values are given in N and indicated by figures
near curves).
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of I N was 341% (the displacement of the free end of the spring of §,, = 150 mm and the initial spring
length was 4.4 cm), and for a force of 4.5 N, it reached 1960% (3,5 = 862 mm).

COMPUTATIONAL AND ANALYTICAL

Algorithm for Determining Stresses and Deformations

The values of the stresses and deformations in the inner and outer fibers of the spring were determined
by the method described in [12, 13]. In the method presented in [12], the shear deformation and shear
stress due to the twisting of the wire, as well as the axial deformation and normal stress caused by the bend-
ing, are taken into account.

Let us give a sequence of calculations of the stresses and deformations arising in the spring material
during the thermal cycle under load. The initial parameters for the calculation are the wire diameter d, the
initial diameter of the spring turn D, = D,,,, the initial spring stiffness C = (D, — d)d, and the initial num-
ber of active turns n,. We experimentally determine the current elongation (7, P;), the maximum elon-

max

gation §;*(P;), and the minimum diameter D;"**(P;) under the specific tensile force P, = const. The dis-
crete auxiliary function is calculated based on the results of the experiment:

Dya — D™"(P)

f(P) = Zma
o (P)
it is used to determine the current turn diameter during the cooling and heating stages, respectively:
Dcool (Tv E) = Dmax - f(R)Scool (Tv E)’ Dheat (T7 PI) = Dmax - f(Pl) 8heat (T, Pl)

Then, for the given temperature and tensile force, we determine the number of active turns

—dd/T’ + \/dzﬁz /it = (D -d) +d*/n*) @ /7 — (D, — d)* +d* /7))

n(1P)= (D-d) +d*/n°

shear deformation

d+39
Y(T,P) = a arctan—/n —arctan—2— |,
D n(D—-d n(D, —d)
axial deformation
(D —d)d (Dy —d)d

T, B = - 5
e(T.F) (D—dy +(d+8/n)’/n° (D, —d) +(d/m)

normal stress
_ 16P(D — d)[(d + &/n)/((D — d))]

Gouter T’ P) b
( 1d* 1+ (d + 8/n)’ /((D - d))

1

and the shear stress in the outer fiber
8P(D —d)
“nd 1+ (d + 8/n) /(WD — d))’

where the correction factor for the shear stress is &, = (D — d)/D.

Touter (T’ PI) = k

Calculation of Stresses and Deformations

According to [12, 13], the shear deformation related to the surface fibers of the spring is determined by
the following formula:

Y= L[arctanaur—s/n — arctan Lj, (D
2n(D - d) n(D-d) (D, —d)

where 7 is the current number of turns.
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Fig. 2. Isolines of thermal cycle in coordinates y — T for spring with stiffness ¢ = 174.55 N/m (tensile force values are given
in N and indicated by figures).

A comparison of [1] and [2] makes it possible to write the shear stress in the outer fiber (the farthest
from the center line) as follows:

T g SP(D—d) =D+d SP(D—d) ‘
MBI+ /D -d)y 4 nd 1+ @D - d))

For the inner fiber, the coefficient k£, can be expressed in terms of the spring index in the following
form:

poD-d__cd _ ¢
) d (C+hd C+1

Then the stresses in the inner fiber (closest to the center line) will be represented by the following
dependence:

max _ C+1 max _C+1 C 8P(D0—d) _C 8P(D0—d) )
inner — outer —

C-1 C-1C+1gg i+ a/mcy C-lna’\i+a/mcy

This stress is limited to the maximum value of T, obtained from the experimental-calculation results:

max _ C4+1 max _ C SP(DO_d)

inner — outer —
C-1

<1, 3)
C-lns 1+ /mcy}

According to formulas (1) and (3), the hysteresis curves corresponding to the constant tensile force P,
were recalculated in the isoline of the thermal cycle in th coordinates y — T represented for the spring stift-
nesses of 174.55 N/m (Fig. 2) and 447.31 N/m (Fig. 3). It is clearly seen from the shape of the curves in
Figs. 2 and 3 that during the thermal cycle, under a constant tensile force, the shear stresses decrease
according to a law that is close to linear as the shear deformation increases. It is characteristic that the
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Fig. 3. Isolines of thermal cycle in coordinates y — 1 for spring with stiffness ¢ = 447.31 N/m (tensile force values are given
in N and indicated by figures).

intensity of the stress change along the deformation ‘Z—j turns out to be much higher for a less stiff spring

(Fig. 2) than the corresponding values for a stiffer spring (Fig. 3).

Spring Design

The task was to develop an algorithm for designing a spring using material with the SME for the given
initial data: P is the value of the constant tensile force acting during thermal cycling, 0 is the maximum
elongation of the spring during thermal cycling through the martensitic transformation ranges under load
P, Cis the spring index, and G is the shear modulus of titanium nickelide in the martensitic state. A fixed
value of the shear modulus corresponding to the martensitic state of the TN-1 alloy was used in the cal-
culations [15] G = 30 GPa, initial values of other parameters: P=4 N, 6 = 25 mm, and C = 10.

The isolines Y — T shown in Figs. 2 and 3 make it possible to solve the problem of the design calculation
of a spring made of the specified material for design forces within the range 1.0 N < P<4.5 N. It can be
seen that the shear stress and the shear deformation change during the thermal cycling under a constant
axial force. The two most important isolines are taken from the total number of obtained curves that cor-
respond to the force P =4 N for springs with stiffness ¢, = 174.55 N/m and ¢, = 447.31 N/m (Fig. 4). Itis
obvious that for the subsequent design calculation, the maximum shear stress found by formula (2) will be

max

the most important one. It will be 7, = 30 MPa and 15" = 20 MPa, respectively. A careful analysis of
the type of experimental isolines in Figs. 2 and 3 makes it possible to assume that the maximum shear
stresses are related to the spring stiffness by the following dependence:

T ==, 4

max

where A and o are some constants of the material and T is the maximum possible stress applied during

the thermal cycling of the spring with stiffness c.
We find the constant o from the following equation:

_ In(@™ /5™
In(e,/¢)
then using (4) we determine A.
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Fig. 4. Isolines of thermal cycle in coordinates y — T for springs with different stiffness for tensile force P =4 N: ¢ =
174.55 N/m and ¢, = 447.31 N/m.

Similarly, let us introduce the relationship between the angular deformation and the spring stiffness
Ymax — B/CB, (5)

where B and [ are some constants of the material and Y™ is the maximum possible deformation accu-
mulated during the thermal cycling of the spring with stiffness c.

We find the constant [ from the following equation:

B=In(y""/vy")/In(er/e)
then, using (5) we determine B.

The results of the calculation of the constants are given in Table 2. The values of T™** and y™* for the
tensile force P =4 N are determined for springs with the known stiffness ¢ by the graphs in Fig. 4.

Let us write down the shear stress constraint condition T (an analog of the strength condition)
Tmax — C 8P (DO — d) — 8§PC < Tmax
C-ln 1 +(/mcy  md\1+1/nC)
Then the wire thickness can be determined from the condition

dzC max 28P 2°
V" (® +1/C)

The number of given turns is determined from the condition of the angular deformation constraint

B d ( d+38/n d J
Y=————| arctan ———— —arctan ———— | < V,ax
2n(D - d) n(D—-d) (D, —d)
Table 2

Quantity Spring 1 Spring 2
¢, N/m 174.55 447.31
"™, MPa 30.00 20.00
Y % 0.80 0.40
o 0.43
A 277.38
B 0.74
B 35.84
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Table 3
Approximation
Quantity
1 2 3 4 5 6
¢, N/m 310.93 400.11 423.04 430.14 432.40 433.13
T MPa 23.39 20.98 20.49 20.34 20.29 20.28
d, mm 1.99 2.10 2.13 2.13 2.14 2.14
v % 0.52 0.43 0.42 0.41 0.41 0.41
n 11.46 13.27 13.70 13.83 13.87 13.88
¢, N/m 489.29 445.98 437.23 434.67 433.87 433.61
(cs— ) /ci, % 57.36 11.47 3.35 1.05 0.34 0.11

where v, is the greatest deformation during thermal cycling, which for a spring of a certain stiffness, is
found from the graphs in Fig. 4.

The formula for calculating the number of turns for a known maximum elongation 6 during thermal
cycling (6) follows from the condition given above:

n

o8 nCtan(2nCYpy) +1 . -
~d\1-(1/(m0))tan 21 Ce) )

The calculation is carried out by the method of successive approximations. At each stage we succes-
sively calculate c, T, d, ¥, and n and check the convergence with respect to the spring stiffness c.

Table 3 shows the results of calculating the parameters of the designed spring at each step with a check
for the convergence of the solution with respect to the spring stiffness.

Based on the results of the calculations, the final design parameters of the spring are as follows: d =
2.14 mm, D= 21.4 mm, and n = 13.88.

Thus, the proposed method for the design calculation of titanium nickelide coil springs is likely to be
applied in engineering when designing actuators of materials with SME.
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