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Abstract—From preset pressure values on both surfaces of a plate, its bending is determined depending
not only on the pressure difference but also on the product of the average pressure and the curvature
of the middle surface. The latter component of this action is determined according to the models of
Kirchhoff and Timoshenko for the case of a cylindrical linear bending of a plate. It is shown that taking
into account the average pressure leads to an increase in the effective f lexural rigidity. The value of
deflection according to the models of Kirchhoff and Timoshenko is compared with a classical result.
A criterion is established for the situation where the influence of the ambient pressure on the plate
bending can be significant. The effect of the average pressure exerted on the longitudinal stability of
the plates is determined.

DOI: 10.3103/S1052618817050089

INTRODUCTION
The analysis of the effect of ambient pressure on the bending of thin-walled elastic elements such as

rods, plates, and shells is important in the case of high pressure values. This effect exerted on structures is
not taken into account because of its insignificance under normal operating conditions. It also depends
on the relative thickness of a plate.

In this paper, we consider static cylindrical bending of a plate. It is assumed that the ratio of the length
L to the thickness h of the plate L/h ∼ 101/2 and greater. In this connection, we start from the Timoshenko
model [1] for bending of a plate, which takes into account the deformation of transverse shear amounting
to dw/dx – ψ, where w(x) is the deflection and ψ(x) is the angle shown in Fig. 1. The result should be com-
pared with bending according to the Kirchhoff model [1, 2].

It is assumed that an excess pressure р1 acts on the lower surface of the plate, and an excess pressure р2
acts on the upper one. Upon the bending of the plates, the pressure values р1 and р2 remain unchanged.
A plate long in the direction у is pinned along the edges x = 0, L, and the pressure does not act on these
edges. In the case of a gaseous medium, the difference in gas densities below and above the plate is not
taken into account. Taking them into account gives an additional distributed transverse force. Such effects
are considered by the authors of [3, 4]. In the case of a dropping liquid, its density should be taken into
account. The direction of the z axis and that of the deflection w upwards are considered as positive.

The expressions for the bending torque and intersecting force have the following form [1, 2]:

(1)

Here, the elastic moduli E and G are taken with the allowance for the Poisson coefficient. In the compo-
sition of G, a coefficient amounting to 0.833 [1, 2] is taken into account.

In the equations for torques and transverse forces

(2)

γ and  are the specific weight of the plate material and the pressure drop across its surface, respectively.
According to the Kirchhoff model, the second equation of (2) contains р instead of .
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Figure 1 shows a plate element having length dx ≈ Rdθ ≈ R'dψ of the middle surface. Here R and R' are
the radii of curvature formed upon bending according to the Kirchhoff and Timoshenko models. Accord-
ing to the first of these, the lengths dx1 and dx2 of the extreme fibers are represented by segments ab and
cd, whereas according to the Timoshenko model they are represented by segments a'b' and c'd '. They are,
respectively,

(3)

The pressure drop across the plate is determined from the equalities рdx = р1dx1 – р2dx2 and р'dx = р1dx –
р2dx . Since dx1, dx2 and dx , dx  differ in these models, the corresponding values of the difference should
also be different:

In the first of these expressions, the curvature R–1 can be replaced by d2w/dx2. Since dx = Rdθ = R 'dψ, in
the second expression,  =  = .

The expressions for р and  take the form

(4)

If we proceed from the Kirchhoff hypotheses, then, instead of (1), M = Dd 2w/dx2, and according to (2),
Q = Dd 3w/dx3. The bending equation d 2M/dx2 = – γh + p takes the form

(5)

According to the Timoshenko model, in accordance with (1)–(4), we have

(6)

Expressing dw/dx from the first equation of (6), we have

(7)

the second equation of (6), taking (4) into account, can be reduced to the form

In this case, the expressions for the bending torque and the intersecting force have the form

(8)
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The system (6) can also be reduced to an equation with respect to the function w(x). From the second
equation of (6) and expression (7), we have

(9)

Let us substitute (9) in the first equation of (6), writing it in the form

Taking into account that only the case of constant values of p1 and p2 over the length of the plate is con-
sidered, we can write the equation

which coincides with Eq. (5) according to the Kirchhoff model. It should be noted that there are no coin-
cidences in the case of р1 and р2 values variable with respect to х.

As one can see from (8) and (9), the expressions for the bending torque and shear force differ from M =
Dd 2w/dx2 and Q = Dd 3w/dx 3

(10)

In the case of р1 and р2 variable with respect to x, the expression for Q in (10) is more complicated.

ANALYSIS AND COMPARISON OF EXISTING MODELS
In order to compare the solutions for the Kirchhoff and Timoshenko models, here we directly use sys-

tem (6). Let us take the conditions at x = 0, L in the form М = 0, w = 0. These conditions are satisfied by
the functions

(11)
Approximation (11) is sufficient for a qualitative estimation of the solution. From the first equation of (6)
and functions (11), we find that

(12)

The second equation of (6) and expressions (4) and (12) give

Multiplying this equation by sin(πx/L), after integration over the range from 0 to L, we obtain

(13)

After the integration of Eq. (5) taking into account (11), we can find the deflection amplitude according
to the Kirchhoff model

(14)

Since the direction of the z axis upward is positive, there is a negative sign in (13) and (14).
Thus, in (13), the coefficient

(15)

determines the influence of transverse shear upon bending, which leads to an increase in deflection. For
many materials, Е/G ≈ 2.5–2.7 [5]; therefore, β ≈ 2(h/L)2. In (13) and (14), taking into account the aver-
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age pressure on the plate via coefficient α results in a decrease in deflection. This effect is the same for
both models, although the expressions for р and  according to (4) differ from each other. The approxi-
mate value of α is

(16)

As one can see from (15) and (16), the correction introduced by taking into account the transverse shear
decreases with the relative thickness as (h/L)2, while taking into account the average pressure on the plate
surfaces gives an increase in the correction as (L/h)2. It should be noted that the Е/G ratio varies little for
different materials, whereas the ratio between the average pressure (р1 + р2)/2 and the elastic modulus Е
can vary over a wide range.

The effect of transverse shear on the bending of beams, plates, and shells is well studied, which cannot
be said about taking into account the average pressure on the surfaces of a plate.

When the excess pressures р1 and р2 have negative values, according to (13) and (16), the value of α is
negative too. Consequently, in this case, the deflection of the plate exceeds the corresponding deflection
according to the classical theory.

In Fig. 2, the curve is plotted for the value of α = 10–2 in (16), or 102(р1 + р2)/(2Е) = (h/L)2, which
means a one-percent correction to the value of the deflection amplitude according to formulas (13) and
(14). In the area below the curve, the influence of the average pressure on the bending of the plate is small,
whereas above the curve this effect becomes noticeable. If, for example, L/h = 300, then in the area lower
than the ratio (р1 + р2)(2Е) ≈ 10–7 there is no influence of the average pressure on bending.

At α ≪ 1, formulas (13) and (14) for the deflection amplitude coincide with the classical ones; at α ≫ 1,
formula (14) has the form

(17)

In this limiting case, the bending of the plate is determined not by its rigidity, but by the average pressure
of the surrounding medium (the first of these factors is proportional to h3, whereas the second one is pro-
portional to h).

In this case, the term with the coefficient D can be omitted from Eqs. (5) and (6). From the first equa-
tion of (6), it follows that ψ = dw/dx, which means that there are no differences in the Kirchhoff and
Timoshenko models. From the second equation of (6), we obtain р = γh, which, together with (4), coin-
cides with Eqs. (5) when the term with bending rigidity D can be omitted therein. Thus, the limiting case
under consideration corresponds to the equilibrium between the self-weight of the plate and the excess
pressures р1 and р2. It should be noted that the exact solution of Eq. (5) without the first term, satisfying
the conditions w = 0 (x = 0, L), has the form

(18)
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As follows from (18), the bending occurs with a constant curvature over the entire length of the plate
amounting to 2реh

–1(р1 + р2)–1. The approximate solution (11) gives an amplitude value (17) and a curva-
ture that varies in a sinusoidal way. For x = L/2, the amplitude of exact solution (18) is

(19)

Instead of the figure 4 in (21), there is π3/8 ≈ 3.88 in the approximate value of (17).

RESULTS AND DISCUSSION
Let us consider change in pressures р1 and р2 exerted on the plate connected with the specific weights

γ1 = gρ1 and γ2 = gρ2 of incompressible media. Here, g is the gravitational acceleration, and ρ1 and ρ2 are
the densities of the lower and upper liquids. Let us confine ourselves to considering the problem according
to Kirchhoff’s model.

Let us assume that, at g = 0 and w = 0, the pressures р1 and р2 on the plate surface from below and from
above are р0. Then, for nonzero values of g and w,

(20)

Taking into account dx1 and dx2 according to (3), we determine the effect exerted on the plate from the
side of the media

Substituting here expressions (20) and R –1 = d 2w/dx2, disregarding nonlinear terms, we obtain

(21)

If the difference between dx1 and dx2 is ignored, then instead of (21) we have  –
.

From the equation Dd 4w/dx4 = –γh + p and expression (21), it follows that

(22)

Taking the approximate solution as before in the form of (11), after the integration of (22), we obtain the
expression for the deflection amplitude

(23)

which coincides with (14), but ре and α appearing in (23) differ from expressions (5) and (13). They coin-
cide at g = 0 and р1 = р2 = р0.

It follows from (23) that, if the weight γh per unit length of the plate is greater than the corresponding
Archimedean force (γ1 + γ2)h/2, then the plate bends downward (negative sign). Otherwise, there occurs
a bending upward. The average pressure р0 always leads to a decrease in deflection. This was established
above for the case of different pressures р1 and р2. At α > 0, which takes place for γ1 > γ2 and at any value
of р0, the deflection is less than in the classical result (23) (when α = 0).

If α < 0, which could be, for example, at р0 = 0 and γ2 > γ1 (the upper liquid is heavier than the bottom
one), the deflection is greater than it should be according to the classical formula. When α tends to –1,
linear theory predicts an unlimited increase in deflection. The value of α = – 1 can be called a critical
value, which is achieved when the specific weight (or density) of the upper liquid exceeds the specific
weight of the lower liquid, amounting to

(24)
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Here, the term (πh/2L)2 is omitted as a small one compared with unity, which corresponds to neglecting
the last term in (21) as compared with the term (γ1 – γ2)w (the same is done in (22) and (23)).

For preset values of L, h, D, γ1, and γ2, the critical value of р0 on the surfaces of the plate according to
(24) is

(25)

It is necessary to estimate the possibility for satisfying condition (25) for real parameters. Let γ1 = γ2,
h/L = 0.0005, and Е = 2 × 105 MPa. Then р0 ≈ –Е (h/L)2 = –0.05 MPa = –0.5 bar. Thus, for thin plates,
the pressure drop below atmospheric pressure causes an increase in deflections (as shown above, a positive
overpressure leads to a decrease in deflections). These effects can be important for very thin plates (micro-
and nanofilms).

If there is a longitudinal compressive force N per unit width of the plate, then a term Nd 2w/dx2 appears
on the left-hand side of Eq. (22). Accordingly, in the solution (23),

(26)

For α = –1, the critical value of the compressive force follows from (26) (the small term mentioned above
is also omitted)

.

Thus, the average ambient pressure р0 and a greater specific weight of the lower medium comparing to the
upper one (γ1 – γ2 > 0) lead to an increase in the critical value of the compressive force. Otherwise (р0 <
0, γ1 < γ2), the critical value of N decreases. By the authors of [4], this problem was called an interaction
of Euler and Rayleigh instabilities.

Up to now, it was assumed that there is no pressure of the media exerted on the end edges of the plate
(х = 0, L). If the compressive force N is caused by the action of pressure р0 of media with identical specific
weights (γ1 = γ2) on the end sections of the plate (х = 0, L), then N = р0h. In this case, from (26), it follows
that α = 0. Therefore, in accordance with (23), it follows that the deflection amplitude

(27)

does not depend on the pressure of a homogeneous liquid. The absolute stability of an elastic band under
all-round pressure was first established by the authors of [6] on the basis of the relationships of three-
dimensional elasticity theory. When the specific weights of the plate material and the surrounding liquid
are equal to each other (γ = γ1), it follows from (27) that W = 0.

CONCLUSIONS
Thus, bending of an elastic plate depending on the excess pressures of media contacting the plate is

revealed in this work. An increase in the average pressure leads to an increase in the effective f lexural rigid-
ity of the plate. In the case of a large average pressure and a small relative thickness of the plate, its bending
is determined not only by the f lexural rigidity but also by the average pressure.
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