ISSN 1052-6188, Journal of Machinery Manufacture and Reliability, 2016, Vol. 45, No. 3, pp. 199—205. © Allerton Press, Inc., 2016.
Original Russian Text © V.D. Potapov, 2016, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2016, No. 3, pp. 11—18.

MECHANICS
OF MACHINES

On Bending and Stability of Beams and Plates Laying
on a Continuous Nonlocally Elastic Foundation

V. D. Potapov

Moscow State University of Railway Engineering, Moscow, 127994 Russia
e-mail: potapov.vd@mail.ru
Received September 23, 2015

Abstract—When designing beams and plates laying on a continuous elastic foundation, the simplest
foundation model proposed by Winkler is normally used. This hypothesis was frequently criticized with
good reason, for it does not consider involvement in the work of those areas of the foundation in the
vicinity of the concentrated reaction point. In order to refine Winkler’s hypothesis, numerous authors
have proposed other models that enable the drawbacks of Winkler’s model to be smoothed out to differ-
ent degrees. In recent years, a different approach to solving the same problems is considered when the
foundation is regarded as nonlocally elastic. Here, the effect of nonlocality of the foundation on the
deformed state and the stability of beams and plates laying on a continuous elastic foundation is analyzed.
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INTRODUCTION

The design of beams and plates laying on a continuous elastic foundation is normally based on the sim-
plest foundation model proposed by E. Winkler [1], according to which the reaction of the foundation at
the point in question is considered proportional to the displacement of the edge of the foundation at the
same point. In other words, the foundation is represented as linearly elastic springs unconnected with each
other; therefore, during a concentrated reaction, only the spring in which this reaction acts becomes
strained. Winkler’s hypothesis was frequently criticized with good reason, since it does not consider
involvement in the work of those areas of the foundation located in the vicinity of the concentrated reac-
tion point. The model proposed by M.M. Filonenko-Borodich [2] can be regarded as a certain refinement
of Winkler’s model; Filonenko-Borodich considered the model of a soil foundation in the form of springs
connected at the upper ends by a unstretchable horizontal cord rigidly fixed outside the foundation.

P.L. Pasternak developed an elastic foundation model remarkable for two soil reaction coefficients [3].
In this model, the reaction of the foundation depends not only on the magnitude of the beam deflection
at the point under consideration, but also on the beam’s deflection curvature at the same point. In [4], a
more advanced three-parameter model of the elastic foundation was proposed. However, the models of
Filonenko-Borodich and Pasternak and Kerr [4], like Winkler’s model, are local, since they do not con-
sider the effect (reaction) of the elastic foundation at points distant from the point in question. In addi-
tion, other models were proposed that are based on solutions to elasticity theory problems for an elastic
half-plane, elastic half-space [5, 6], and an elastic layer [7].

A sufficiently thorough review of models and works as a whole on problems related to the design of
beams and plates on elastic foundations is presented in [6]. A drawback of the models based on solutions
to elasticity theory problems is that they do not sufficiently correctly describe the stress distribution in the
soil body under the foundation. This is accounted for, on the one hand, by peculiarities of the solutions to
contact problems of elasticity theory, the occurrence of infinitely large stresses in the half-space or the
half-plane under the beam ends or plate edges. On the other hand, it is obvious that the soil body must not
be equated with an elastic isotropic material. This especially concerns weakly cohesive or completely non-
cohesive soils. For example, with such soils, the stress distribution under rigid bars (stamps) is not consis-
tent with the solutions to elasticity theory problems [3, 5].

In recent years, in connection with the creation of new composites and nanomaterials, much attention
in mechanics is devoted to analyzing the stress—strain state of structures taking into account nonlocal
effects [8§—10]. Apparently, for the first time, such an approach to a continuous elastic foundation was pro-
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posed in [11], where the deflection of the beam at the point in question w(x) is defined by the integral of
the reaction intensity #(x) of the elastic foundation as

w(x) = (1/ C)I K(x — x*)r(x*)dx*, (1

—a

where 2a is the length of the beam, c is a constant analogous to the coefficient of the elastic foundation reaction,
and K([x — x*) is the influence function taken as an exponent

K(bx — x*) = (/2)e =1,
where | is constant.
Integral relation (1) is reduced to the differential equation

2
d W(2X) _ sz
dx
the solution to which has to meet two boundary conditions.

As a result, the solution to the problem of the beam’s deflection reduces to the solution to the differ-
ential equation

~(1/cu’r, 2)

ErA) (o2 d W) W(x)+cw(x> a(x), 3)
dx*

where EI is the bending stiffness of the beam and q(x) is the intensity of the distributed load.

It must be emphasized that, according to the accepted hypothesis, the solution to Eq. (3) has to meet
six boundary conditions. As a consequence of the inconsistency between the order of differential equa-
tion (3) and the number of boundary conditions, the latter circumstance leads to the occurrence of appar-
ent concentrated reactions at the beam ends. The solution to this equation looks significantly different
from the solution to the equation derived when using the Winkler hypothesis:

d w(x)
dx*
Another approach to solving the same problem from the viewpoint of nonlocality was proposed in [12]
to determine the natural frequency of the beams resting on a nonlocal foundation taking into account

nonlocal damping. The dependence between the reaction #(x, ) and the deflection w(x, f) is proposed in
the form of the relation

+ cw(x) = g(x). 4)

r(x,1) = jk(x EyW(E, dE + j j C(x,5 17— 1) W@ & Dyege,

X1 Xy =

where K(x, ) is a function that takes into account the nonlocality of the foundation; C(x, €, t — 1) is a
function that considers the nonlocality of the foundation damping; and x,, x, are the coordinates of the
beginning and the end of the elastic foundation.

The function K(x, €) is taken as an exponent
K(x - &) = (/2)e™, (5)
a Gaussian function K(jx — ) = (p/«/it)exp[—}ﬁ(x — £)2/2], or a triangular function
_( B §|) for |x—g<2

0, 1in other cases,

K(x—&h =

It should be noted that c, a coefficient in terms of kN /cm?, should be included in the above expressions
for function K(x, €).

To solve the problem, the finite element method is used.

However, in this form, the model of nonlocal elasticity of the foundation does not always yield results
that considerably differ positively from those obtained using a Winkler foundation model.
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In this article, a similar approach, although in a different form, is applied to solve the problem of bending
and stability of beams and plates laying on an elastic foundation taking into account the latter’s nonlocality.

BENDING OF BEAMS RESTING
ON A CONTINUOUS NONLOCALLY ELASTIC FOUNDATION

The deflection of the beam is found in this case from the solution to the integro-differential equation

e, I Clbx — AW = 4(x), ©

where L is the length of the beam, c is a constant, and the function C(x — &|) meets the normalization

requirement [; C(x —g)dg = 1.

The solution to Eq. (6) has to meet boundary conditions written in the same way as those for beams
that lay on a Winkler foundation.

Then, the expression

Clx — &) = ed(x = &) + e, (v/2e ™, (7)
is taken as the function C(jx — &|), where 8(x — E) is the delta function and ¢, ¢,, and v are constants.
The second term in Eq. (7) can be interpreted as a “correction” to Winkler’s model.

We use the following generalized two-dimensional problem (Fig. 1) [15] as an example to illustrate the
efficiency and accuracy of the proposed foundation model. Let us consider an elastic rectangular plate
1 cm thick, 400 cm long, and 100 cm high. The elasticity modulus of the plate material is 10000 kN/cm?,
and the Poisson ratio is 0.2. Along the side edges, constraints are imposed that exclude any displacement
along axes x and z with axis z being perpendicular to the plate plane; along the lower edge, constraints are
imposed that exclude any displacement along axes y and z. A steel beam with a square cross section and a
side of 1 cm is glued onto the upper edge of the plate. The structure is loaded by a vertical concentrated
force of 10000 kN applied to the plate’s axis of symmetry and directed from the top downward. We calcu-
late this two-dimensional problem by the finite element method selecting square finite elements with
dimensions of 5 X 5 cm. The beam is also divided lengthwise into 5-cm-long finite elements.

The deflection of the steel beam has the shape indicated by line / in Fig. 2. The maximum deflection
of the beam in the final model is 1.67 cm.
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The other two curves were obtained for a beam laying on a solid elastic foundation using the proposed
model of a nonlocally elastic foundation and a Winkler foundation. The calculation was performed by the
finite difference method with an increment of 5 cm. The error of the obtained approximations was esti-
mated using the mean-square criterion

81
5= 1/Z(w[i]— P’ /81,
i=1

where p[i] represents the values of the deflection found by the finite element method.

The following values of the foundation parameters correspond to the local minimum error s for the
nonlocal elastic foundation model: cc, = 353.5 kN/cm?, cc; = —258.5 kN/cm?, v = 0.034 1/cm and the
error itself's = 0.009 cm. These data are represented by curve 2in Fig. 2 with a maximum of w,,,,, = 1.83 cm.

The corresponding data for Winkler’s model have the following values: ¢ = 185 kN/cm?, s = 0.024 cm,
and w,,,, = 2 cm. Curve 3 in Fig. 2 gives an idea of the change in the deflection of the beam in this case.
The values of the characteristics for two variants of the elastic foundation model show that the nonlocally
elastic foundation model makes it possible to obtain more correct results. The same conclusion can be
drawn by comparing curves 2 and 3.

Let us compare the results with the corresponding results obtained with the nonlocal foundation model
described by one exponent (5). In this case, the following values of the characteristics of the foundation
and the deflection correspond to the minimum value of error s = 0.026 cm: ¢ = 186 kN/cm?, p =
2.48 1/cm, and w,,,, = 2.02 cm. The deflection of the rod is represented in this case by curve 4 in Fig. 2,
which practically coincides with curve 3 that corresponds to a Winkler foundation. This comparison con-
vincingly proves that the foundation model that uses Eq. (5) does not always appear more efficient com-
pared with Winkler’s model.

STABILITY OF THE BEAMS LAUING ON A CONTINUOUS NONLOCALLY ELASTIC
FOUNDATION

Let us consider an infinitely long beam compressed by the longitudinal force F; the beam lays on a con-
tinuous foundation for which the influence function C(Jx — g|) has the form of Eq. (7). The equation, anal-
ogous to Eq. (6), is written in this case as

4 2 p
Er9200  p WD) | o - oy = 0. ®)
dx dx 0

The solution to Eq. (8) is sought in the form
w(x) = e D(k). )

On substituting the expression e®(k) into Eq. (8) and reducing it by e**, we obtain
K*El —k’F + ¢ j Cye ™ dy |®k) = 0, (10)

where y =x — E.
If the function C(jx — &|) has the form of (7), Eq. (10) is written as

(*EI —k°F + c[(cy + ¢V /(v + k7)) ]}®(k) = 0.
The following equality corresponds to the critical state of the rod:

(k*EI —k°F + c[(cy + ¢,V /(V' + k*)]} = 0. (11)
Hence, we express the force as
F = kEI + cleg/k* + eV /[K° (v + k)] (12)

To determine the critical value of the longitudinal force F,., we differentiate relation (12) with respect

to k% and set the result equal to zero. From the resulting equation, we find the root and then the value of
force F, from expression (12). If we take the same parameter values as those in the previous section,
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EI= 1750000 kN/cm?, cc, = 353.5 kKN/cm?, cc; = —258.5 kN/cm?, and v = 0.034 1/cm, we obtain F,, =
48 298.6 kN. The half-wavelength of the mode of the beam’s buckling A appears to be 8.64 cm.

For comparison, we present the expression and values of the critical force for a beam laying on Win-
kler’s foundation (4) with the characteristic ¢ = 186 kN/cm?:

E,, =4EIc =36083.2 kN.

The half-wavelength A appears to be 30.94 cm in this case.

It can be seen that consideration of nonlocality of the foundation results in a noticeable increase in the
critical force and a reduction in the half-wavelength of the mode of the baem’s buckling.

STABILITY OF PLATES LAYING ON A CONTINUOUS NONLOCALLY ELASTIC
FOUNDATION

Let us consider an infinite elastic plate that layers on a continuous nonlocally elastic foundation and is
uniformly compressed in the direction of two coordinate axes x and y. The deflection of the plate in the
case of bifurcation of the deformed state is determined by the equation

oo oo

DV'w + N,9*w/ox + N,0*w/dy* +c j j Cx - &y — OwE, OdEC = 0, (13)

where N, and N, are the intensities of the uniformly distributed compression loads that act in the direction
of axes x and y.

By analogy with the representation of the function C(jx — g|), we select the function C(x — &, y — ¥) in
the one-dimensional case in the form [14]

C(x =&y —0) =lcedd) + c;(n*/2m)e ™1, (14)

where 1 is a parameter that characterizes the scale of nonlocality; d = \/ (x— &)2 +(y— C)2 is the distance
between two points of the plate with the coordinates x and y and £ and C.

This variant of the function C(x — €, y — €) can be interpreted as a variant of an “isotropic” nonlocally
elastic foundation.

If the foundation material has different reactive properties in the directions of coordinate axes x and y,
a model of an “orthotropic” nonlocally elastic foundation can be proposed. In particular, the exponential
form of the function C(x — E, y — €) can be applied [14] as

C(x =&y =) = [cyd(d) + cnv/4)e =07, (15)
where 1 and v are parameters that characterize the scales of nonlocality in the direction of axes x and y,
respectively.
We seek function w(x, y) in the form

i(kyx+k

wix,y) = 0Kk, k). (16)

Substituting expression (16) into Eq. (15), we obtain the equation for the values of bifurcation loads N,
and N,
y

(ki +k))’D—(kiN,+k.N,)+ cj j C(d, [xDe

—00 —00

—i(k z+k

Pzdy =0,

wherez=x—Eandxy =y —C.

Then, we restrict ourselves to the case when the intensities of loads N, and N, are considered equal to
N=N,=N,.

Then, in the case of an isotropic foundation material, we obtain

N = (k2 + kDD + cey /(2 + k2) + cem?®/[2m(k2 + kj)]j j e VT ETHRD ry (17)

—00 —o0
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k., cm™! ky, cm™! N, kN/cm?.
0 0.1153 51716.2
0.02 0.1135 51716.3
0.04 0.1081 51716.3
0.06 0.0982 51716.6
0.08 0.08191 51716.4
0.08151 0.08151 51716.3

Let us consider a 1-cm-thick steel plate (D= 1923 076.9 kN/cm?) that rests on a foundation with the fol-
lowing characteristics: cc, = 353.50 kN/cm?, cc; = —258.5 kN/cm?, and 1 = 0.034 1/cm. When calculating
the integrals in relation (17), an increment of Az = AT = 0.1 cm was used and the number of increments in
the direction of either axis was 3000. The calculated results are presented in the table; these results indicate
that an infinite set of buckling (bifurcation) modes corresponds to the same critical load value N, =
51716 kN/cm?. These modes change from the mode with waves only along axis y with a half-wavelength of
27.24 cm to the mode with square prominences with a half-wavelength in the direction of either of the coor-
dinate axes of 38.3 cm. The shape of the prominence also changes in a similar way in another case when
waves are formed only in the direction of axis x, as well as to the same square prominences.

For comparison, let us consider a plate laying on a Winkler foundation. In this case, instead of expres-
sion (16), we have N = (k; + k)D + c/(k: + k).

An undulation in the form of a prominence with parameters that obey the equality below corresponds
to the critical compression load value:

ki +k, =+Jc/D. (17)

In this case, an infinite set of buckling modes also corresponds to the same critical load value N, for
the shape of the undulation of which parameters k, and k, obey equality (17). If the rebound the coeffi-

cient of the elastic foundation reaction coefficient ¢ in Winkler’s model is 186 kN/cm?, then ki + ky2 =

0.00991 1/cm? and N, = 37825.5 kN/cm? With k, = 0 and k, = ¥0.00991 = 0.0996 1/cm, we have a
buckling mode in the shape of waves only in the direction of axis y with a half-wavelength of 31.55 cm,
while in the case of square prominences in the buckling mode (k, = k, = 0.070 1/cm) the width and length
of these prominences is 44.62 cm. Consequently, the behavior of a plate laying on a Winkler foundation
is similar to the behavior of a plate laying on a nonlocally elastic foundation in the sense of an infinite set
of the buckling modes. The critical load values of the plates of these two variants differ considerably. The
geometry characteristics of the plates’ buckling modes also differ, although this difference is less than the
difference in the critical load values.

Let us consider another variant of nonlocality of an elastic foundation, the orthotropic one. The
expression, analogous to expression (17), is written as

—i(k, z+k

N = (k2 + kDD + ey /(k2 + k2) + cemv/[40k2 + k)] j j e TRV, Dzdy. (18)

—o00 —oo

On calculating the integrals, we obtain

N = (k; + kD + cey [tk + k) +cey /s + k) + k(A + k. /v

Let us assume that the orthotropic foundation of the plate has the following characteristics: cc, =

353.5 kN/cm?, cc; = —258.5 kN/cm?, and n = v = 0.034 1/cm. The buckling mode with undulation only
in the direction of either of the coordinate axes corresponds to the critical load value N for the same plate,
ie., k,=0.1127 1/cm, k, = 0 or k, = 0.1127 1/cm, and k, = 0, which corresponds to the half-wavelength

A = 27.88 cm. The N, value appears to be 50559.6 kN/cm? in both cases. It can be seen that the critical

load values are very close in the cases of the isotropic and orthotropic foundations; the buckling modes in
the case of the isotropic foundation, however, appear more diverse.
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CONCLUSIONS
A new version of the one- and two-dimensional model of a continuous nonlocally elastic foundation

is proposed, which is used to solve problems of bending and stability of beams and plates. Two variants of
nonlocality of a two-dimensional elastic foundation—when plates lay on an elastic foundation—are con-
sidered: isotropic and orthotropic foundations; these models enable a more correct description of the fea-
tures of a deformed nonlocally elastic foundation. A numerical experiment showed that this model satis-
factorily describes the deformation of a beam laying on an elastic foundation when the nonlocality of the
foundation is taken into account by the following integro-differential equation kernel:

C(x = &) = cd(x = &) + ¢,(v,/2) exp(—v,|x — E)).

In a more general case, the expression C([x — E|) can be taken as the sum of exponents as

Cllx — &) = codx = &) + D" ci(v,/2)exp(=v [x - &),

i=1

where ¢; and v; are constants.

Analysis of the stability of a beam and plates has shown that taking into account the nonlocality of the

foundation results in a considerable increase in the critical load value compared with similar loads in the
case of a Winkler foundation.
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